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Abstract. We consider the problem of privacy-preserving processing of
outsourced data in the context of user-customised services. Clients store
their data on a server. In order to provide user-dependent services, service
providers may ask the server to compute functions on the users’ data.
We propose a new solution to this problem that guarantees data privacy
(i.e., an honest-but-curious server cannot access plaintexts), as well as
that service providers can correctly decrypt only –functions on– the data
the user gave them access to (i.e., service providers learn nothing more
than the result of user-selected computations).
Our solution has as base point a new secure labelled homomorphic en-
cryption scheme (LEEG). LEEG supports additional algorithms (FEET)
that enhance the scheme’s functionalities with extra privacy-oriented fea-
tures. Equipped with LEEG and FEET, we define HIKE: a lightweight
protocol for private and secure storage, computation and disclosure of
users’ data. Finally, we implement HIKE and benchmark its performances
demonstrating its succinctness and efficiency.

Keywords: Homomorphic encryption, Privacy-preserving computation,
Security protocol, GDPR

1 Introduction

We are living in the digital era, where people like to store their personal data
in the cloud and get access to it any-time and anywhere. On the other hand,
database maintainers and service providers develop an increasing interest for
processing and extracting statistics from users’s data. The usual setting is de-
picted in Figure 1: users (or clients) agree to share their personal data with some
service providers which, in exchange, returns customised services and improved
user-dependent performances. Typical application scenarios are: e-Health envi-
ronments (e.g., keeping a blood pressure database that doctors can access to
retrieve data) or smart trackers (e.g., activity bands that keep track of users’
performance and achieved goals).
In recent years, the cryptographic community has proposed new techniques for
computing on outsourced data including Fully Homomorphic Encryption [12],
Verifiable Computation [10] or Multi-Key Homomorphic Signatures [8]. Beyond
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Fig. 1: The setting we consider: users send data to a database and enjoy some service.
Example 1 (e-Health): doctors can query for the average blood pressure in the last
hour and alert the user in case of need. Example 2 (sport): the service provider can
query for the distance run until ‘now’ and feedback when the daily goal is achieved.

the obvious benefits, user-customised services may have undesirable drawbacks.
In particular, service providers can collect data from thousands of clients, iden-
tify trends, profile users, and potentially sell their knowledge to third parties
without the clients’ consent or awareness.

In this paper, we define a model for user-customised services that addresses
new privacy challenges inspired to the guidelines provided in the European Gen-
eral Data Protection Regulation (GDPR) [6]. This regulation sets clear bound-
aries on how data should be collected, handled and processed by protecting clients
from possible miss-usages of their data by malicious service providers.

In particular, we give one of the first attempts1 to rigorously formalise in
cryptographic terms three of the main guidelines in the GDPR [6], namely: (i) the
client’s data is never stored in plaintext on public databases (art. 32); (ii) the
client decides who can read her data (art. 15); (iii) the client has the right to be
forgotten, i.e., to request deletion of her data (art. 17).

Our Contributions. Our main contribution is the proposal and efficient in-
stantiation of HIKE, a new cryptographic protocol that solves the problem of
providing client-customised services. In details, our contributions are as follows:

(a) We present LEEG, a new labelled encryption scheme based on the elliptic-
curve ElGamal scheme which supports homomorphic computation of multi-
variate linear polynomials.

(b) We define a set of additional algorithms that increase the versatility of LEEG,
including an algorithm to cryptographically destroy encrypted data and a
new procedure through which a chosen third party gets decryption rights
for specific computations on encrypted data. We call this set of algorithms
FEET as they extend the LEEG scheme.

(c) We then use LEEG and FEET in our HIKE protocol. HIKE is a novel lightweight
protocol designed for application scenarios that involve users, servers, and
service-providers. What makes this scenario different is that users’ data need
to be both privately and securely stored while allowing service providers to
perform simple statistics on specific portions of users’ data.

(d) We prove that HIKE is secure with respect to our security model that includes
notions that address three articles of the GDPR law, namely (i) user’s data
is never stored as plaintext in the server; (ii) the user has the power to

1 The only academic works we found related to the GDPR are [5,20], where the fo-
cus is on technical and implementation requirements. We could not find any work
attempting to formalise and analyse the GDPR requirements in cryptographic terms.
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decide who can read its data; (iii) the user can always ask the server to
cryptographically destroy its data.

(e) We implement the HIKE protocol and empirically test its succinctness and
efficiency. We provide a complete benchmark for all the algorithms involved.
Our implementation is freely available at https://github.com/Pica4x6/

HIKE.

Overview of our Technique. Our starting point is the ElGamal encryption
scheme on elliptic curves [16,14]. We progressively change this scheme by intro-
ducing three ideas: (i) replacing the sampling of randomness in a ciphertext by
using labels and Pseudo Random Function (PRF); (ii) modifying the labels to
include the public key of the scheme, and; (iii) exploiting the structure of the
new ciphertexts to define algorithms for special user-privacy oriented features.

In more detail, but still quite abstractly, the three ideas work as follows. A
label is a unique identifier for a specific message and it contains the sender’s
public key, a random curve point and a tag that identifies the message. Idea (i)
is to change how the randomness is generated during the encryption procedure.
We replace the random sampling of ElGamal encryption with the evaluation of
a secure pseudo-random function PRFk on the label. For this change to work
correctly, we also need to add the PRF key k to the user’s secret key. The major
implications of this change are: 1) we can get rid of the random component of
classical ElGamal ciphertexts (thus achieving better succinctness), and 2) the
new scheme has secret-key encryption.

Idea (ii) exploits the special structure of the labels and views the “ran-
dom curve point” as the public key of the designated-receiver (e.g., the service
provider). By doing so, we can algebraically manipulate ciphertexts in mean-
ingful ways and also allow data decryption for both the encryptor and the
designated-receiver (the latter upon receiving a special data-dependent token).

The last idea (iii) is to combine (i) and (ii) and design a protocol which
addresses: data-secrecy (similar notion to semantic security); token-secrecy (data
owner have full control on who can decrypt their data), and; forgettability (data
owners can ask for their data to be destroyed).

Related Work. Rivest et al. [23] introduced the concept of Homomorphic En-
cryption (HE) schemes as a set of algorithms that can be used to encrypt data,
perform some computations on the ciphertexts, and directly decrypt the result
of the computation.

For over 30 years, all secure proposals of HE schemes were only partially ho-
momorphic, i.e., they supported either additions or multiplications of ciphertexts
[19,7]. The breakthrough result was due to Gentry [12] and started an avalanche
of Fully Homomorphic Encryption (FHE) schemes [25,3,24,4]. However, most
FHE schemes have major drawbacks due to key sizes and (or) efficiency. Albeit
HE supports less expressive computations than FHE, as long as we are inter-
ested in simple statistics (e.g., average, additions, least square fit of functions)
on encrypted data, HE has better performances than FHE.

Barbosa et al. [2] introduced the notion of Labelled Homomorphic Encryp-
tion (LabHE) which combines HE with labels. This is an elegant approach to
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address the problem of privacy-preserving processing of outsourced data. In this
paper, we follow their definitional framework but we avoid the presence of a
fully trusted party that executes the initial setup and holds a master secret key.
Albeit being less expressive than Barbosa et al.’s scheme, our protocol achieves
full succinctness without relaying on any trusted party.

A concurrent and independent work by Fischer et al. [9] proposes a linearly
homomorphic construction also based on ElGamal encryption scheme. The aim
of [9] is to provide both information flow security and authentication while our
scheme has a privacy-oriented cryptographic approach —since we do not consider
authentication, and it achieves full ciphertext succinctness.

2 Preliminaries

Notation. For any finite set S, we denote by x ←$ S the uniformly random
sampling of elements from S, and by |S| as the size of the set. We denote by [n]
the set {1, ... , n}, by [0..q] the set {0, ... , q}, and by {0, 1}∗ the space of binary-
strings of arbitrary length. For any linear function f on n variables we describe
f as f(x1, ... , xn) = a0 +

∑
i∈[n] aixi, for opportune values ai ∈ [0..q − 1]. We

denote by λ the security parameter of cryptographic schemes and functions, and
by ε a negligible function in λ, i.e., ε(λ) = O(λ−c) for every constant c > 0. We
refer to computational feasibility (resp. infeasibility) of a problem if all known
algorithm to solve the problem run in polynomial (resp. exponential) time.

Elliptic Curves. For prime p, let E be an elliptic curve over Fp and P be
a generator point for the group G derived by E . Let q be the order of G, i.e.,
G =< P >= {O, P, 2 ·P, ... , (q−1) ·P}, where O is the point at infinity (identity
element of G). For security reasons, we require q to be a prime number or a non-
smooth (i.e., q is divisible by a large prime).

Problem 1 (Elliptic Curve Discrete Logarithm Problem [16]). Let p be a prime
number and E be an elliptic curve over Fp. Let G be the subgroup generated
by a point P ∈ E such that G =< P > and |G| = q is prime or a non-smooth
number. Given Q ∈ G, the Discrete Logarithm (DLog) requires to find the value
m ∈ [0, ... , q − 1] such that m · P = Q.

Pollard’s Rho [21] is a well-known algorithm for solving the DLog problem. Its
running time, however, is exponential in the group size, i.e.,O(

√
|G|) = O(2

q
2 ).

Assumption 1 Given G, P and Q as in Problem 1, it is computationally in-
feasible to find a solution to the DLog.

Problem 2 (Interval Discrete Logarithm Problem [22]). Let E , Fp, G, P and Q
be as in Problem 1. The Interval Discrete Logarithm Problem (IDLP) requires
to find the value m ∈ [0, ... , q−1] such that m·P = Q knowing that m ∈ [a, ... , b]
for a, b ∈ [0, ... , q − 1].

Pollard’s kangaroo algorithm [22] finds an existing solution to the IDLP problem

in a given interval [a, ... , b] in time O(2
∆
2 ) where ∆ = dlog2(b− a)e is the number

of bits in the binary representation of the interval length [17].
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Assumption 2 Solving the IDLP is computationally feasible for |[a..b]| < 222,
while it is infeasible for larger intervals |[a..b]| > 2160.

Pseudo Random Functions (PRF) [15]. A PRF is a collection of keyed
functions from a (possibly infinite) set A to a finite set B. Formally, let F be the
set of all functions from A to B and K be a (finite) set of keys, a PRF family is
a set of functions {PRFk : A→ B | k ∈ K} satisfying the following properties:

1. For any a ∈ A and k ∈ K, the function PRFk(a) is efficiently computable.
2. No Probabilistic Polynomial-Time (PPT) algorithm can distinguish the func-

tion PRFk (for k←$ K) from a function f ←$ F .

In this paper, we regard HMAC-SHA256 as secure pseudo random function family
for functions PRFk : {0, 1}∗ → Zq with k ∈ K.

2.1 Labelled Homomorphic Encryption

The notion of labelled homomorphic encryption was introduced by Barbosa et
al.to improve the efficiency of HE schemes [2]. The main idea is to combine ho-
momorphic encryption [12] with labelled programs [11] to be able to compute on
selected outsourced ciphertexts. A labelled program P is a tuple (f, (`1, ... , `n)),
such that f : Xn → X is a function of n variables and `i is a label for the i-th
input of f . Labelled programs can be used to identify users’ input to computa-
tions by imposing ` = (id, τ) for some user identifier id and tag τ [8]. We denote
by I` = (f, `) the identity labelled program on the label `, i.e., f`(x) = x.

Formally, a labelled homomorphic encryption scheme LabHE = (KeyGen,Enc,
Eval,Dec) is defined by the following algorithms:

KeyGen(1λ): on input the security parameter, it outputs a secret key sk and a
(public) evaluation key ek that includes a description of a message spaceM,
a label space L, and a class of admissible functions F .

Enc(sk, `,m): on input sk, a label `, and a message m, it outputs a ciphertext ct.
Eval(ek, f, ct1, ... , ctn): on input ek, a function f :Mn →M in a set of admis-

sible functions F , and n ciphertexts. It returns a ciphertext ct.
Dec(sk,P, ct): on input sk, a labelled program P = (f, `1, ... , `n) and a cipher-

text ct, it outputs a message m.

Moreover, LabHE satisfies the properties of correctness, succinctness, (semantic)
security and context hiding defined in as follows.

Definition 1 (Correctness [2]). A LabHE scheme is said to be correct for a
family of functions F if, for all keys (ek, sk)← KeyGen(1λ), all f ∈ F , any selec-
tion of labels `1, ... , `n ∈ L, and messages m1, ... ,mn ∈ M, with corresponding
ciphertexts cti ← Enc(sk, `i,mi), i ∈ [n], and P = (f, (`1, ... , `n)), it holds that:

Pr [Dec (sk,P,Eval(ek, f, ct1, ... , ctn)) = f(m1, ... ,mn)] ≥ 1− ε.

Definition 2 (Succinctness [2]). A LabHE scheme is said to be succinct if
there exists a fixed polynomial poly(·) such that every honestly generated cipher-
text (output by Enc or Eval) has bit-size size poly(λ).
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The security notion for LabHE schemes is inspired to the standard semantic
security experiment proposed by Goldwasser and Micali [13].

Definition 3 (Context Hiding [2]). A LabHE scheme is context-hiding if
there exists a PPT algorithm S such that, for any (ek, sk)← KeyGen(1λ), f ∈ F ,
any tuple of labels `1, ... , `n ∈ L and messages m1, ...mn ∈M with corresponding
ciphertexts ct1 ← Enc(sk, `i,mi), if m = f(m1, ... ,mn) and P = (f, `1, ... , `n)
then:

1
2 ·
∑

ct

∣∣Prob[Eval(ek, f, ct1, ... , ctn) = ct]− Prob[S(1λ, sk,P,m) = ct]
∣∣ < ε(λ).

Definition 4 (Semantic security for LabHE [2]). A LabHE scheme is se-
mantically secure if for any PPT algorithm A taking part to Expsem.secLabHE,A in Fig-

ure 2, it holds that: Advsem.secLabHE,A(λ) = Pr
[
Expsem.secLabHE,A(λ) = 1

]
− 1

2 < ε.

Expsem.secLabHE,A(λ):

b←$ {0, 1}, Llab = ∅
(ek, sk)← KeyGen(1λ)

(`∗,m0,m1)← AOEncsk(ek)
if `∗ ∈ Llab

ct = error

else
ct← Enc(sk, `∗,mb)
Llab ← Llab ∪ `∗

b′ ← AOEncsk(ct)

Output 1 if b = b′, and 0 otherwise.

OEncsk(`,m) :
if ` ∈ Llab

return error

else Llab ← Llab ∪ `
return ct← Enc(sk, `,m).

Fig. 2: The semantic-security experiment for LabHE schemes, and the OEnc oracle.

3 Labelled Elliptic-curve ElGamal (LEEG).

In its standard construction, the ElGamal encryption scheme [7] is defined on
finite multiplicative groups and is only multiplicative-homomorphic. It is possi-
ble to obtain an additive-homomorphic version of ElGamal by using groups de-
fined over an elliptic curve [16,14] and specific message encoding maps, discussed
later in Section 7. Essentially, in the elliptic curve setting, exponentiations are
replaced by multiplications and multiplications by additions. Security reduces to
the hardness of computing the discrete logarithm on elliptic curves. For further
details on ElGamal for elliptic curve groups see [14].

In this section, we define the first labelled and symmetric-key version of
the additive-homomorphic ElGamal scheme that we refer to as LEEG (Labelled
Elliptic-curve ElGamal). To ease the adoption of LEEG in our GDPR-oriented
protocol HIKE in Section 5.1, we make a small adaptation to Barbosa et al.’s
framework for LabHE. We introduce a SetUp algorithm that outputs some global
public parameters pp, and make the KeyGen algorithm run on pp. This change
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is only syntactic if KeyGen is run once and brings with straightforward modifi-
cations to the definitions.

Definition 5 (LEEG). The LEEG scheme is defined by the following five PPT
algorithms:

SetUp(1λ): on input the security parameter , the setup algorithm outputs pp
that include: a λ-bit-size prime p, an elliptic curve E over Fp with a (prime)
order-q group G ⊆ E, a generator P of the group G, a set of admissible
functions F (namely linear functions), a set of messages M ∈ [m], a set
of message identifiers T = {0, 1}t, a set of labels L = G × G × T , and a
keyed-pseudo-random function family PRF from {0, 1}∗ to [0..q− 1]. The pp
are input to all subsequent algorithms even if not stated explicitly.

KeyGen(pp): on input the public parameters the key generation algorithm selects
a random element sk ←$ [q − 1] and a random PRF key k ←$ K. It outputs
the secret key sk = (sk, k).2

Enc(sk, `, m): on input a secret key sk = (sk, k), a label ` = (sk · P,Q, τ) with
Q ∈ G and message m ∈M the encryption algorithm returns the ciphertext:

ct = m · P + PRFk(`) · sk ·Q ∈ G (1)

In case the input label has as first entry a value different from sk · P the
algorithm returns error.

Eval(f, ct1, ... , ctn): on input a linear function f(x1, ... , xn) = a0 +
∑
i∈[n] aixi

and n ciphertexts cti, the evaluation algorithm returns the ciphertext:

ct = a0 · P +
∑
i∈[n]

ai · cti ∈ G (2)

Dec(sk, P, ct): on input a secret key sk = (sk, k), a labelled program P =
(f, `1, ... , `n) for a linear function f with labels of the form `i = (sk·P,Qi, τi),
and a ciphertext ct, the decryption algorithm computes:

T = ct− sk ·
( ∑
i∈[n]

ai · PRFk(`i) ·Qi
)
∈ G (3)

and returns m = logP (T ).

We note that LEEG is a fully dynamic scheme, indeed ciphertexts output by
Eval can be used as input to new computations (as long as the new computation
includes the initial labelled program).

Succinctness of LEEG. The succinctness of the LEEG scheme is immediate
given that ciphertexts (output by Enc or Eval) are always one single group ele-
ment in G ⊆ E . Further details regarding the actual bit-size for our implemen-
tation can be found in Section 7.

2 In the original definition of Labelled Homomorphic Encryption [2], the KeyGen al-
gorithm additionally outputs a public evaluation key. Since in our case this key is
empty, we decided to skip it and have more succinct algorithm descriptions.
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Correctness of LEEG. The correctness of LEEG is a straightforward computa-
tion.

Context-hiding of LEEG. The context-hiding property of LEEG is straightfor-
ward since given sk,P and m = f(ct1, ... , ctn) the simulator is able to reconstruct
exactly the same ciphertext output by Eval(f, ct1, ... , ctn) as S(sk,P,m) :=
f(m1, ... ,mn) · P + sk

∑
i∈[n] aiPRFk(`i) ·Qi.

Security of LEEG. The proof is rather simple and we provide here just an in-
tuition, deferring the formal proof to Appendix A. First the challenger replaces
PRF with a truly random function, that is, the values r are now taken uniformly
at random from [q − 1]. At this point the security of the scheme becomes infor-
mation theoretic.3 We then prove the semantic security in the same way as for
standard OTP-based schemes, i.e., we show that the challenge ciphertext has
the same probability of being an encryption of m0 as of m1.

4 FEET: Feature Extensions to the labelled-homomorphic
El-gamal encrypTion scheme

In this section we define FEET a set of additional algorithms that increase the
versatility and use cases of LEEG. The new algorithms build on the following
observation. Given a label ` = (Q1, Q2, ·) we can interpret its first component
Q1 as the public key of the user who is performing the encryption (that we call
this data-owner), and Q2 as the public key of another user (that we call intended
receiver). By doing so, we can give a sensible meaning to the procedures and ma-
nipulate ciphertexts in such a way that decryption works correctly only for data
encryptor statde in the first component of the label, and the designated-receiver
identified by the second component of the label. Assuming the existence of a
Public Key Infrastructure (PKI), FEET exploits the algebraic structure of LEEG
ciphertexts to perform two actions:

- Cryptographically ‘delete’ data owner’s ciphertexts from a database by mak-
ing them un-decryptable, i.e., even the original data-owner would retrieve a
random message by decrypting a destroyed ciphertext.

- Allow the data-owner to generate a special piece of information (called token)
that enables the intended receiver to decrypt the output of a specific labelled
program run on the encryptor’s data.

Definition 6 (FEET: set of additional algorithms for LEEG). Let LEEG =
(SetUp,KeyGen,Enc,Dec,Eval) be the labelled homomorphic encryption scheme
of Definition 5, where the KeyGen algorithm is run multiple times and associates
identities (identifiers id) to the keys it generates. We define:
3 Indeed, even provided an oracle access to an efficient solver of the discrete loga-

rithm problem, the only information the adversary would retrieve from the challenge
cipher-text is a random message m′ = mb + r · sk. This is possible because, differ-
ently from El Gamal ciphertexts, LEEG ciphertexts have a single component that
combines message and randomness.
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Destroy(ct): on input a ciphertext ct, the destroy-cihpertext algorithm picks a
random r ←$ [0..q − 1] and outputs the destroyed ciphertext ct′ = ct + r · P .

PublicKey(sk): on input the secret key sk = (sk, k) output the corresponding
public key pk = sk · P .

TokenGen(sk,P): on input a secret key sk = (sk, k) and a labelled program P =
(f, `1, ... , `n) the token generation algorithm checks if the labels are of the
form `i = (sk ·P,Q, τi) — for a point Q ∈ G and some τi ∈ T , i ∈ [n]. If the
condition is not satisfied, the algorithm returns error; otherwise, it parses
f(x1, ... , xn) = a0 +

∑
i∈[n] aixi and outputs :

tok = sk ·
( ∑
i∈[n]

ai · PRFk(`i)
)
· P (4)

TokenDec(sk, ct, tok): on input a secret key sk = (sk, k), a ciphertext ct and a to-
ken tok, the decryption-with-token algorithm outputs m′ = logP (ct− sk · tok).

Information theoretic security of Destroy. We prove this property by show-
ing that for any given message m and ciphertext ct′, ct′ is a possible ‘de-
struction’ of ct = Enc(sk, `,m) for any label. More formally, for any m ∈ M,
` = (sk · P, pk, τ) and ct′ ∈ G it holds that:

Prob[Destroy(Enc(sk, `,m)) = ct′] =
|{r : ct′ = (m+ r′) · P + sk · r · pk}|

|G| =
1

|G|
where the probability is taken over all possible random choices in the Destroy
algorithm (r′ ∈ [0..q − 1]), and r = PRFk(`). In particular, for any pair of label-
message couples (`0,m0), (`1,m1) it holds that:

Prob[Destroy(Enc(skid0 , `0,m0)) = ct′] = Prob[Destroy(Enc(skid1 , `1,m1)) = ct′].

Therefore given a ct′ output by Destroy this could be generated by the ciphertext
of any message m ∈M.

Correctness of TokenDec. In order to prove the correctness of the decryption-
with-token algorithm we need to show that

TokenDec(sk2,Eval(f, ct1, ... , ctn),TokenGen(sk1,P)) = f(m1, ... ,mn)

where cti = Enc(sk1, `i,mi), `i = (pk1, pk2, τi) for some τi ∈ T , and P =
(f, `1, ... , `n). This is a straightforward computation and follows from Equation
(2), Equation (4) and the fact that pki = ski · P .

Remark 1 (Composability of TokenGen). It is possible to combine two (or more)
decryption tokens tok1, tok2 generated for distinct labelled programs P1,P2, to
obtain a joint decryption token tok that enables the intended decryptor with
public key pk2 = Q (common to all the labels involved) to correctly decrypt in
one-shot the ciphertext for any labelled program P such that f = b1f1 + b2f2,
for any b1, b2 ∈ [0..q− 1]. Intuitively, this property follows by the linearity of the
sum. A detailed explanation can be found in Appendix B.
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5 The HIKE protocol

In this section, we introduce HIKE: a protocol that employs our LEEG scheme
and its extra features FEET to achieve advanced properties relevant to real world
applications.

In what follows, we present a use case for HIKE and defer the formal de-
scription to the Section 5.1. We consider a scenario with three types of actors:
data-owners (called clients and denoted as C), a cloud server (denoted as S)
that controls the database ∆ where the clients’ records are stored, and service
providers (denoted as P). The work-flow of the interactions between these ac-
tors is depicted in Figure 3. As a use case, consider clients with smart-watches
used for tracking their sport performances. With HIKE clients can safely up-
load their data on the cloud, cancel previously uploaded records, retrieve their
data (or functions of thereof) at any time. Moreover, clients can allow their per-
sonal trainer app to access specific aggregations of data to provide personalised
performance feedback.

Client Server

Service Providers

Dec(skC,P, ct) → m

Enc(skC, ℓ,m) → ct UploadData(∆, ℓ, ct) → ∆
upload

forget

retrieve

token

retrieve

Destroy(skC,P) → tok

Eval(f, ℓ1, ..., ℓn) → ct

TokenDec(skP, ct, tok) → mTokenGen(skC,P) → tok

Fig. 3: Clients upload their encrypted data to the server (via an upload request). At
any point in time, clients have the right to destroy their records in the database (via a
forget request). In order to obtain aggregate information on the stored data, clients
and service providers can ask the server to compute certain functions on the outsourced
data and return the (encrypted) result (via a retrieve request). Finally, clients are
always able to decrypt their own retrieved data, while service providers cannot decrypt
directly. In order to decrypt the result of a computation P = (f, `1, ... , `n) on the
client’s data, the service provider needs to ask the client to generate a computation-
specific decryption token (via a token request) that enables the designated service
provider to decrypt.

5.1 A formal description

Definition 7 (The HIKE protocol). Let LEEG = (SetUp,KeyGen,Enc,Dec,Eval)
be the labelled homomorphic encryption scheme in Definition 5 enhanced with
the algorithms FEET = (TokenGen,TokenDec,Destroy) described in Definition 6.
We assume a PKI that, at every run of the KeyGen algorithm, associates iden-
tities (identifiers id) to the freshly generated keys. The HIKE protocols is defined
by the following procedures:
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Initialise(1λ): on input the security parameter the initialisation procedure runs
SetUp(1λ)→ pp and returns the public parameters. Implicitly, it also gener-
ates a database ∆ and a public key infrastructure.

SignUp(id): on input a user identifier id the sign-up procedure returns skid ←
KeyGen(pp) and updates the public ledger (PKI) with (id, pkid) where pkid =
PublicKey(skid). For correctness, this procedure outputs ⊥ if user id was al-
ready present in the system.

Encrypt(sk, `,m): on input a secret key sk, a label ` and a message m the en-
cryption procedure returns the ciphertext ct = Enc(sk, `,m).

UploadData(∆, `, ct): on input a database ∆, a label ` and a ciphertext ct the
upload data procedure performs ∆ = ∆ ∪ {(`, ct)}.

Forget(∆, `): on input a database ∆ and a label ` the forget-ciphertext procedure
retrieves the record (`, ct) from ∆ and replaces it with (`, ct′) where ct′ ←
Destroy(ct), i.e.,it outputs ∆ = ∆ \ {(`, ct)} ∪ {(`, ct′)}.

Compute(∆,P): on input a database ∆ and a labelled program P = (f, `1, ... , `n)
the retrieve-data (or aggregate data) procedure collects the ciphertexts cti cor-
responding to labels `i present in ∆ and returns ct = Eval(pp, f, ct1, ... , ctn).

Decrypt(sk,P, ct): on input a secret key sk, a labelled program P, and a cipher-
text ct the decryption procedure outputs m = Dec(sk,P, ct).

AllowAccess(sk,P): on input a user’s secret key sk and a labeled program, the
allow-access procedure returns tok = TokenGen(sk,P).

AccessDec(sk, ct, tok) on input a user’s secret key sk, a ciphertext ct and a de-
cryption token tok, the allowed-decryption procedure returns the output of
TokenDec(sk, ct, tok) = m.

5.2 Evaluation correctness of HIKE

The evaluation correctness of our HIKE protocol essentially reduces to the cor-
rectness of the underlying LEEG scheme (Definition 5) and FEET (Definition 6).
Formally, the HIKE is correct if for any pp← Initialise(1λ), for any combination
of keys (pkC, skC), (pkP, skP) generated by the SignUp procedure, for any labelled
program P = (f, `1, ... , `n) with labels for the form ` = (skC · P,Q = pkP, ·), for
any set of messages mi ∈ M with ciphertexts cti = Encrypt(sk, `i,mi), and for
m = f(m1, ... ,mn) it holds that:

(1) Decrypt(skC,P,Compute(P)) = m.

(2) AccessDec (skP,Compute(P),AllowAccess(skC,P)) = m.

Condition (1) is equivalent to the evaluation correctness of the LEEG scheme
given that the Compute procedure returns the output of LEEG’s Eval algorithm
and the Decrypt procedure runs LEEG’s Dec algorithm.

Condition (2) is equivalent to the correctness of LEEG’s additional algorithms
given that AllowAccess returns the output of TokenGen, Compute returns the
output of LEEG’s Eval algorithm and AccessDec runs the TokenDec algorithm.
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5.3 Interactions between the procedures of HIKE

We consider three categories of users taking part to the HIKE protocol:

Clients C: (or data owners), these users can run the procedures: SignUp, Encrypt,
Decrypt and AllowAccess.

Server S: (or database maintainer), this user can run the procedures: UploadData,
Compute and Forget.

Service providers P: (or third-party applications), these users can run the
procedures: SignUp and AccessDec.

To simulate a real-world scenario, we allow users registered in the system to in-
teract with each other. We model interaction via requests sent from one user to
another and that there exists an authentication system to ensure this. Moreover,
we assume that the target user reacts to the received request as follows:

upload: upload data requests can be performed by clients only and are directed
to the server. Upon receiving an upload(`, ct) request by a client C, the
server checks if the submitted record is a new one , i.e., if (`, ·) /∈ ∆. In this
is the case, S runs UploadData(∆, `, ct) and returns done to C, otherwise S
returns error.

forget: forget-ciphertext requests can be performed by clients only and are
directed to the server. Upon receiving an forget(`) request by a client C,
the server checks that the label is a legit one for C, i.e., that ` = (pkC, ·, ·)
and that (`, ·) ∈ ∆. If both conditions holds, S runs Forget(∆, `) and returns
done to C, otherwise it returns error.

retrieve: retrieve-data requests can be performed by clients or by service providers
and are directed to the server. Upon receiving a retrieve(P) request the
server checks if the labelled program P = (f, `1, ... , `n) is well-defined, i.e., if
for every i ∈ [n], (`i, ·) ∈ ∆ and `i = (pkh, pkk, ·) for some users registered in
the systems. If the conditions hold, S runs Compute(∆,P) = ct and returns
ct to whom performed the query, otherwise it returns error.

token: access-token requests can be performed by service providers only and are
directed to clients only. Upon receiving a token(P) request, the client has the
freedom to decide whether to reply consistently, running AllowAccess(sk,P) =
tok and returning tok to P, or to ignore the query returning error.

6 Security model and proofs for HIKE

Our security model builds on the setting introduced in Section 5.3 and covers
three main goals:

1 ) data-secrecy, i.e., confidentiality of the clients’ data;
2 ) token-secrecy, i.e., clients have full control on who can decrypt their data

(only targeted service providers can decrypt, and no one else); and
3 ) forgettability, i.e., clients can ask for their data to be destroyed.

12



Interestingly, these security notions cover three of the requirements presented in
the GDPR: the confidentiality of personal data (security of processing, art. 32),
the clients’ right of access (and share) data (art. 15), and; the right to ask for
erasure of her personal data (right to be forgotten, art. 17) [6].

Adversarial model We denote malicious users with the user’s category and
the symbol ∗, e.g., P∗, and make the following assumptions:

- Clients Ci are honest, i.e., they behave according to the interactions de-
scribed in Section 5.3.

- The server S is honest but curious, i.e., it behaves according to the inter-
actions in Section 5.3 but tries to infer information about the clients’ data
(passive adversary).4

- Service Providers Pj can be malicious and deviate from the protocol in
arbitrary ways.

We note that since anyone can generate and register keys in the protocol (using
the PKI infrastructure), a malicious server corresponds to a malicious service
provider that has access to an honest server (as the latter would reply to any
retrieve request).

6.1 Data secrecy

Our notion of data-secrecy is inspired to the definition of semantic-security for
labelled homomorphic encryption by Barbosa et al. [2] but adapted to our proto-
col’s setting. Intuitively, we require that the adversary A, who controls a (mali-
cious) server provider P∗ and holds a copy of the (encrypted) database ∆, should
not be able to determine the plaintext associated to a database record (`, ct).
We formalise the notion through the data-secrecy experiment in Figure 4.
Notably, A is given access to three oracles: OSignUp to simulate users register-
ing to the system, OEncrypt to populate the database with adversarial chosen
data (i.e., A chooses the messages encrypted by a client). With abuse of nota-
tion we will write pkid ∈ Lkeys meaning that Lkeys has an element of the form
(id, skid, pkid).

Theorem 1. The HIKE protocol achieves data-secrecy, i.e., for any PPT adver-
sary A taking part to the experiment in Figure 4, it holds that:

Advdata.secHIKE,A(λ) = Pr
[
Expdata.secHIKE,A(λ) = 1

]
− 1

2
≤ Qid · Advsem.secLEEG,A(λ),

where Qid is a bound on the total number calls to the sign-up oracle.

Proof. We exhibit a reduction B that uses A to win the semantic-security ex-
periment for the LEEG scheme. At the beginning the reduction samples id? ∈ ID
as its guess for the identity that A will target during the game. (Note that

4 This assumption removes the theoretical need for the definition of forgettability in
our security model. We include it for completeness.
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Exp
data−secrecy
HIKE,A (λ):

b←$ {0, 1}, Llab = Lkeys = ∅
pp← Initialise(1λ)
(id∗, skid∗ , pkid∗)← A(pp)
Lkeys ← Lkeys ∪ (id∗, ∗, pkid∗)

(`∗,m0,m1)← AOSignUp(·)
OEncrypt(·,·)(pp)

parse `∗ = (pkid, pkid′ , τ)

if `∗ ∈ Llab or pkid = pkid∗ or pkid, pkid′ /∈ Lkeys

ct = error

else
ct← Encrypt(skid, `

∗,mb)
Llab ← Llab ∪ {`∗0, `∗1}

b∗ ← AOSignUp(·)
OEncrypt(·,·)(ct)

if b∗ = b return 1, else return 0.

OSignUp(id) :
if (id, ·, ·) ∈ Lkeys

return error

else
(id, skid, pkid)← SignUp(id)
Lkeys ← Lkeys ∪ (id, skid, pkid)

return pkid.

OEncrypt(`,m) :
parse ` = (pkid, pkid′ , τ)

if ` ∈ Llab or pkid = pkid∗
or (·, ·, pkid) /∈ Lkeys

return error

else
Llab ← Llab ∪ `
ct← Encrypt(skid, `,m)

return ct.

Fig. 4: The data-secrecy experiment and the oracles OSignUp and OEncrypt.

|ID| = Qid is polynomial in this game). This step corresponds to B betting that
A will choose the client id? in its challenge labels.

When the semantic-security experiment starts, the reduction B (that is play-
ing as an adversary) gets ek = (pk? = sk · P, pp) from its challenger C. Then
B starts the data-secrecy experiment (as a challenger) by sending pp to A.
The adversary chooses an identity id∗ and a pair of keys for it. A also sends
(id∗, pkid∗) to B. The reduction registers the (malicious) user id∗ in the system
(Lkeys ← Lkeys ∪ (id∗, ·, pkid∗)) and replies to A’s queries as follows.

sign-up queries: B forwards the queries to the OSignUp.
encryption queries: B forwards the queries to the OEncrypt oracle unless

` = (pk?, pk, τ), in which case B updates the list of queried labels Llab ← Llab∪`,
forwards (`,m) as an encryption query to C and relays its reply to A.

Let (`∗,m0,m1) be A’s input to the challenge phase. If `∗ 6= (pk?, ·, ·) the
reduction aborts (asA chose to challenge a different client than the one C has cre-
ated). This event happens with probability (1− 1

Qid
). Otherwise `∗ = (pk?, Q, τ),

B updates the list of queried labels Llab ← Llab ∪ `∗ and sends (`∗,m0,m1) to its
challenger. Let ct denote C’s reply, B sends ct to A.

In the subsequent query phase B behaves as described above. At the end of
the experiment, B outputs the same bit b∗ returned by A for the data-secrecy
experiment. Note that since A is given exactly the same challenge as in the
semantic-security experiment, ifA has a non-negligible advantage in breaking the
data-secrecy of HIKE then B has the same non-negligible advantage in breaking
the semantic security of LEEG, unless B aborts its simulation. Therefore we can

conclude that: Advsem.secLEEG,B(λ) ≥
(

1
Qid

)
Advdata.secHIKE,A(λ). ut
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6.2 Token secrecy

Our notion of token-secrecy captures the idea that only the service provider
P holding a valid decryption-token for a ciphertext that was created with P
as intended recipient (i.e.,with associated label of the form ` = (·, pkP, ·)) can
decrypt the message correctly. In other words, the adversary A (as a malicious
P∗) should not be able to decrypt the result of any computation P∗ for which
it did not received decryption-tokens. We recall that by the token-composability
property (Remark 1 in Section 4), given two decryption-tokens tokP , tokP′ for
two labelled programs P and P ′, it is possible to generate decryption tokens for
any linear combination of the programs P and P ′.

In the token-secrecy experiment, we make use of the same OSignUp oracle
as in the experiment in Figure 4; an OEncrypt′ oracle which is the same as the
OEncrypt in the experiment in Figure 4 except that every time it would output
a ciphertext ct it will also add the record to the database, i.e.,∆ ← ∆ ∪ (`, ct)
where ` is the label chosen by A; and an additional ODisclose oracle, that enables
A to get decryption-tokens of chosen (computations on) records. We allow the
adversary to get decryption-tokens for any computation P as long as this does
not contain the challenge labels.

Exptoken.secHIKE,A (λ):

b←$ {0, 1}, Ltok = Llab = Lkeys = ∅,∆ = ∅
pp← Initialise(1λ)
(id∗, skid∗ , pkid∗)← A(pp)
Lkeys ← Lkeys ∪ (id∗, ∗, pkid∗)

O = {OSignUp(·), OEncrypt′(·, ·), ODisclose(·)}

(`∗,m0,m1)← AO(pp)

let `∗ = (pkid, pkid′ , τ)
if `∗ /∈ Llab or `

∗ ∈ Ltok or pkid = pkid∗
or pkid, pkid′ /∈ Lkeys

ct = error

else
ct← Encrypt(skid, `

∗,mb)
Ltok ← Ltok ∪ `∗, Llab ← Llab ∪ `∗

b∗ ← AO(ct)
if b∗ = b return 1, else return 0.

OEncrypt′(`,m) :
parse ` = (pkid, pkid′ , τ)
if ` ∈ Llab or pkid = pkid∗

or (·, ·, pkid) /∈ Lkeys

return error.
Llab ← Llab ∪ `
ct← Encrypt(skid, `,m)
∆← ∆ ∪ (`, ct)
return ct.

ODisclose(P) :
parse P = (f, `1, ... , `n)
with `i = (pkid, pkid′ , τi)
if pkid, pkid′ /∈ Lkeys or pkid = pkid∗

or `i ∈ Ltok for all i ∈ [n]
return error.

Ltok ← Ltok ∪ {`1, ... , `n}
tok = AllowAccess(skid,P)
return tok.

Fig. 5: The token-secrecy experiment and the oracles OEncrypt′ and ODisclose

Theorem 2. The HIKE protocol achieves token-security, i.e.,for any PPT ad-
versary A taking part to the experiment in Figure 5, it holds that:

Advtoken.secHIKE,A (λ) = Pr
[
Exptoken.secHIKE,A (λ) = 1

]
− 1

2
≤ Qid · Advsem.secLEEG,A(λ).

Due to the space limit, we moved proof of Theorem 2 to Appendix A.
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6.3 Forgettability

Exp
forget.sec
HIKE,A (λ):

b←$ {0, 1}, Ltok = Llab = Lkeys = ∅, ∆ = ∅
pp← Initialise(1λ)
(id∗, skid∗ , pkid∗)← A(pp)
Lkeys ← Lkeys ∪ (id∗, ∗, pkid∗)
O = {OSignUp(·), OEncrypt′(·, ·), ODisclose(·)}
`∗ ← AO(pp)
parse `∗ = (pkid, pkid′ , τ)

if `∗ /∈ Llab or pkid = pkid∗ or pkid, pkid′ /∈ Lkeys

ct = error

else
m←$M
ct← Encrypt(skid, `

∗,m)
ct′ ← Destroy(ct)
∆← ∆ ∪ (`∗, ct′)
tok← AllowAccess(skid, I`∗)
Ltok ← Ltok ∪ {`∗}; Llab ← Llab ∪ {`∗}

m∗ ← AO(ct′, tok)
if m∗ = m return 1, else return 0.

Fig. 6: The forgettability experiment

Our notion of forgettability (forget.sec)
captures the idea that after a forget

request, the target ciphertext does no
longer decrypt to the original message.
More precisely, there is no way to de-
rive what the original message was
from a destroyed ciphertext.

Our forget.sec experiment, in Fig-
ure 6, uses the same oracles as the ex-
periment in Figure 5. Concretely, Ex-
periment 6 is like the token-secrecy ex-
periments (Fig. 5) until the challenge
phase. In this phase the forget.sec ad-
versary challenges C with one single
new label `. The challenger then ran-
domly selects a message m, and en-
crypts it, generates the corresponding
decryption token tok for A, and runs
the Forget procedure on the challenge
ciphertext. Finally C returns to A the
values (ct′, tok). The adversary’s goal is now to correctly guess the challenger’s
challenge message m. Let m∗ denote the output ofA at the end of the experiment
in Figure 6, we say that A wins if m∗ = m.

It is important to notice that the forget.sec experiment does not model an
adversary that is able to obtain the original ciphertext ct, e.g., via a database
backup or some previous random retrieve request. The main reason for this
restriction is the necessity to deploy an access control system on the database ∆
which is of independent interest. On the other hand, to avoid an old-ciphertext to
be reused, we can only suggest that the client C never distributes the decryption
token of queries that involve the label corresponding to forgotten ciphertexts.

In a nutshell, our forgettability security statement below says that after a
forget request the user’s record encrypts a random message. In particular, we
are able to show that HIKE’s Forget procedure achieves information theoretic
security in ‘hiding’ the original message m even under the presence of a malicious
server.5

Theorem 3. The HIKE protocol achieves perfect forgettability, i.e., for any PPT
adversary A taking part to the experiment in Figure 6, it holds that:

Pr
[
Exp

forget.sec
HIKE,A (λ) = 1

]
=

1

|M|

Proof. The result follows trivially from the information theoretic security of the
Destroy algorithm demonstrated in Section 4. ut
5 More precisely, if the server is honest-but-curious except with forget requests.
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7 Implementation details and results

In this section, we discuss our encoding map from the message space to elliptic
curve points. Afterwards, we describe the test-settings of our HIKE implementa-
tion with respect to different elliptic curve choices.

Encoding Messages on the Elliptic Curve. A typical design problem that
arises when using Elliptic Curve Cryptography (ECC) is to define an injective
map φ from a message space M to the subgroup G generated by a point P
on an elliptic curve E . This problem was firstly considered and “solved” by
Koblitz in [16] by exploiting specific elliptic curves constructed over F2n for
some appropriate n that depends on the message space dimension.

The main issue with Koblitz’s map is that if we equip the message space
M with an operation � and obtain the group (M, �), then it is generally false
that φK is a homomorphism between (M, �) and (G,+), i.e.,there exists two
messages m1,m2 ∈ M such that φK(m1 � m2) 6= φK(m1) + φK(m2). A more
natural homomorphism map is given by φ : Zq → G as φ(m) := m · P . The
mapping is trivially a homomorphism when considering the message space as
the natural group (Zq,+). Unfortunately computing the inverse map φ−1 is
exactly the DLog problem.

In our HIKE protocol we use this natural map to encode messages, and there-
fore the decryption procedure corresponds to solving an instance of the DLog
problem. The apparent contradiction is addressed by the following observation.
The security of HIKE relies on the hardness of solving the DLog problem (As-
sumption 1), but the efficiency of the decryption procedure is guaranteed by
the feasibility of solving the IDLP in a particular interval (Assumption 2). In
our implementation of HIKE, we consider the natural embedding φ and define a
context-dependent message-space interval M = [a ... b], for some a, b ∈ N. This
trick works whenever the decryption knows an approximation of the expected
value. This is the case in most of the application scenarios we consider (e.g.,
range of blood pressure values and range of kilometres run per day). Addition-
ally, the technique does not work when the message space is too big (e.g., floats
of 64 bits) or not known.

To demonstrate our claim, we carried out one experiment to test that the de-
cryption algorithm solves the IDLP in a reasonable time (see Figure 7b) whereas
a malicious adversary would still face the full DLog problem which is infeasible
(see Figure 7a). We implemented an extremely naive brute-force attack that
checks, sequentially and incrementally, all the points of the selected interval.
For this algorithm the worst-case in the interval [a, ... , b] is the point b · P . In
Figure 7a, we empirically measure the running time of the our naive brute-force
algorithm to solve the DLog problem with respect to the security parameter. As
expected, the problem is exponentially hard. Then, in Figure 7b, we focus on a
specific message space, i.e., numbers from 0 to 222 as justified by Assumption 2,
and plot the required time needed to decrypt a specific message.

HIKE Implementation. We have developed our HIKE scheme on Python by
creating a new cryptographic scheme in the Charm Crypto framework [1]. The
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Fig. 7: Comparison between solving the DLog vs solving IDLP

source code of HIKE is freely available at https://github.com/Pica4x6/HIKE.
For the experiments, we used a MacBook Air with 2,2 GHz Intel Core i7 and 8
GB of RAM. We executed the experiments 100 times independently using the
timeit library and report the average of the execution times in Table 1.

KeyGen Enc Dec Eval PublicKey TokenGen TokenDec Destroy

prime256v1 0.9ms 280.0ms 13442.4ms 20.2ms 5.3ms 1293.2ms 14.5ms 6.4ms
secp384r1 1.0ms 399.7ms 15149.3ms 19.0ms 70.1ms 1521.0.0ms 86.7ms 73.9ms
secp521r1 1.3ms 426.6ms 17102.7ms 189.2ms 66.4ms 1837.5ms 101.2ms 68.0ms

Table 1: Benchmark of HIKE scheme using the natural encoding map φ.

In addition, we evaluated the performances of HIKE using the three ellip-
tic curves prime256v1, secp384r1 and secp521r1 that are recommended by the
National Institute of Standard and Technology (NIST) [18]. Note that our im-
plementation is agnostic to the definition of elliptic curve, thus it can be easily
adapted to work with any type of elliptic curves defined in [1].

We remark that for every experiment, we randomly select a message in the
HIKE message space dimension in which IDLP is feasible by our Assumption 2
and our empirical test in Figure 7.

8 Conclusions and directions for future work

In this paper, we proposed a new labelled homomorphic encryption scheme for
multi-variate linear polynomial functions called LEEG. LEEG can be seen as a
variant of ElGamal encryption on elliptic curve groups. We showed that LEEG
supports additional features that are not commonly investigated for encryption
scheme. We call this set of extra algorithms FEET, as it extends LEEG and
improves its versatility. We then combined LEEG and FEET to make HIKE, a
lightweight protocol designed for privately and securely store users’ data while
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keeping it accessible to data owners and authorised service-providers. Applica-
tion scenarios for HIKE include sport-tracking activity and simple e-Health alter
systems. We deployed HIKE on Python and benchmarked its performance. Fi-
nally, we included in our security model some GDPR-inspired notions and proved
that HIKE provides: (i) encrypted storage of the client’s data; (ii) data owner’s
right to disclose information (including computation on data) to designated ser-
vice-providers; and (iii) the right to be forgotten, i.e., the possibility for data
owners to request that selected records be made un-recoverable.

We identify some direction for further development of our HIKE protocol.
First, since HIKE is based on a semantic-secure homomorphic encryption scheme,
it cannot tolerate a malicious server. It would be interesting to design protocols
with no trust on the server, thus providing both data confidentiality and in-
tegrity. Second, there are other extra features (not just FEET) that are worth
developing. For example: generation of disclosure-tokens to allow any (chosen)
third-party to decrypt a chosen computation on the user’s data; introducing a
trusted authority (e.g., a legal entity) with the power of decrypting malicious
users’ data only if it collaborates with the designated service providers; enabling
secure “editable decryption” to support the rectification right (art. 16 in GDPR).
Third, it would be worth investigating multi-key properties in LEEG. Such ex-
tension would for instance enable service-providers to perform statistic on data
generated by different.

To the best of our knowledge, HIKE is the first cryptographic protocol proven
to meet specific real-world privacy requirements, and we hope that it consti-
tutes a springing-board for future works. We believe that a GDPR-oriented
design of cryptographic protocols and primitives would facilitate developers
implementation choices when designing new digital-services, as well as ensure
cryptographically-proven security in the data-flow, leading to privacy-by-design
solutions.
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tion.
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Appendix

A Detailed proofs

Semantic security of LEEG. We want to prove that our LEEG scheme is
semantically secure according to Barbosa et al.’s definition [2] (Definition 4).

Proof. Let Qprf(λ) be a bound on the total number of encryption queries per-
formed by A during the security experiment. Let Game 0 be the semantic se-
curity experiment in Definition 4 where, for consistency with our definition of
LEEG, the challenger runs SetUp(1λ) → pp to obtain the public parameters of
the scheme, then it runs KeyGen(pp) → sk = (sk, k) and computes pk = sk · P .
In addition, C ignores any query with label ` = (Q′, Q, τ) where Q′ 6= pk.

Let Game 1 be the same as Game 0 except that the challenger replaces
every PRFk(·) instance with the evaluation of a truly random function rand :
G×G×T → [0..q− 1]. It is quite easy to see that the difference between Game
1 and Game 0 is solely in the generation of the values r. Therefore the probability
of A winning is the same in the two games, a part from a Qprf(λ) factor that
comes from distinguishing the PRF instance from a truly random function. Thus

|Prob[G0(A)]− Prob[G1(A)]| ≤ Qprf(λ) · AdvPRFA (λ).

At this point, we observe that for any given ciphertext ct and label-message
pair (`,m) there is exactly one value r ∈ [0..q − 1] for which ct is an encryption
of m for label `. In particular, for every triple (ct, `,m) it holds that

Prob[Enc(sk, `,m) = ct] =
|r ∈ [0..q − 1] : M + r · sk ·Q = ct|

|[0..q − 1]| =
1

q
,

where the probability is taken over all the possible values r ←$ [0..q − 1]. Since
the above probability holds also for the challenge ciphertext ct∗ we have that
Prob[Enc(sk, `0,m0) = ct∗] = Prob[Enc(sk, `1,m1) = ct∗] (semantic security) and
implies Prob[G1(A)] = 1

2 . Therefore:

Prob[G0(A)] ≤ |Prob[G0(A)]− Prob[G1(A)]|+ Prob[G1(A)]

≤ Qprf(λ) · AdvPRFA (λ) +
1

2

which proves the semantic security of LEEG, given that Qprf(λ) is polynomial
and AdvPRFA is negligible (by our security assumption on the PRF family). ut

Proof of Theorem 2. We want to prove our HIKE protocol achieves token
secrecy, i.e., that Advtoken.secHIKE,A (λ) ≤ Qid · Advsem.secLEEG,A(λ).

Proof. We exhibit a reduction B that uses A to win the semantic-security exper-
iment for the LEEG scheme. The reduction works exactly as the one in the proof
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of Theorem 1 a part for a couple of exceptions. First, this reduction holds an
additional (private) list Lrand, that is empty at the beginning of the simulation.
Second, B behaves differently (only) in the following cases:

Encryption queries: B forwards the queries to the OEncrypt′ oracle, unless
` = (pk?, pk, τ). In case ` = (pk?, pk, τ), the reduction does not have the secret
key for encryption and token generation. In order to simulate the encryption
and be consistent with future token-generation queries, B checks if (`, r) ∈ Lrand

for some value r ∈ [0..q − 1]. If so, B uses the existing values r to compute the
ciphertext ct = (m ·P + r ·pk). Otherwise, B picks a random value r ←$ [0..q−1],
updates Lrand ← Lrand ∪ (`, r), and computes ct = (m · P + r · pk). In any case,
B updates the list of queried labels Llab ← Llab ∪ `, and returns ct to A. Note
that ct has the same distribution as the output of Enc(sk?, `,m), indeed for any
r chosen by the reduction there exists a value r′ ∈ [0..q−1] such that r = r′ ·sk?
mod q and thus ct = m · P + r · pk = m · P + r′ · sk? · pk. The latter series of
equalities shows that B’s simulation is still perfect.

Disclose queries: B forwards to the ODisclose oracle all the queries P =
(f, `1 ... , `n) with f(x1, ... , xn) = a0 +

∑
i∈[n] aixi, `i = (pk, pk′, τi) and pk 6=

pk?. Otherwise, P contains labels of the form `i = (pk?, pk′, τi). The reduction
performs the same checks as the ODisclose oracle, if any check fails B returns
error. In case all conditions are met, B proceeds by checking if (`i, ·) ∈ Lrand

for all i ∈ [n], in which case the reduction uses the randomness stored in Lrand

to compute the token tok = (
∑
i∈[n] airi) · pk?. Otherwise, for all those labels `j

not present in Lrand, B samples a random element r ←$ [0..q − 1] and updates
the private list Lrand ← Lrand ∪ (`j , r). At this point (`i, ri) ∈ Lrand for all the
labels in the queried P and B can compute tok = (

∑
i∈[n] airi) · pk?. In either

case, B updates the list of queried token-labels, i.e., Ltok ← Ltok ∪ (`1, ... , `n),
and returns tok to A.

Let (`∗,m0,m1) be A’s input to the challenge phase. If `∗ 6= (pk?, ·, ·) the
reduction aborts (A chose to challenge a different client than the one B bet on).
This event happens with probability (1− 1

Qid
).

Otherwise `∗ = (pk?, Q, τ), B updates the list of queried labels Llab ← Llab∪`∗
and sends (`∗,m0,m1) to its challenger C for the semantic security game. Let ct
denote C’s reply, B forwards ct to A.

In the subsequent query phase B behaves as described above.
At the end of the experiment, B outputs the same bit b∗ returned by A for

the token.sec experiment. Note that since A is given exactly the same challenge
as in the sem.sec experiment, if A has a non-negligible advantage in winning the
token.sec experiment, then B has the same non-negligible advantage in breaking
the semantic-security of LEEG, unless B aborts its simulation. Therefore we con-

clude that: Advsem.secLEEG,B(λ) ≥
(

1
Qid

)
· Advtoken.secHIKE,A (λ). ut
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B Token composability in FEET

In this appendix we show token composability for two labelled programs. The
general case follows immediately.

Consider two labelled programs P1 = (f1, `1, ... , `n) and P2 = (f2, `
′
1, ... , `

′
n′).

For consistency, token composability requires that all the labels involved in P1

and P2 are of the form ` = (sk ·P,Q, τ) for some opportune value of τ . Without
loss of generality, we can set f1 = a0 +

∑
i∈[n] aixi and f2 = a′0 +

∑
j∈[n′] a

′
jxσ(j)

for opportune coefficients ai, a
′
j ∈M, and an index-mapping function σ : N→ N

used to model the fact that the functions may be defined on a different set of
variables. Let I ⊆ N be the set of indexes of common variables, formally:

I = {i ∈ [n] such that σ(j) = i for some j ∈ [n′]}.

The composed labelled program P = b1P1 +b2P2 is defined as P = (f, ˜̀
1, ... , ˜̀̃

n)
with f = b1f1 + b2f2, f(x1, ... , xñ) = (b1a0 + b2a

′
0) +

∑
i∈I(b1ai + b2a

′
i)xi +∑

i∈[n]\I b1aixi +
∑
j∈[n′]\σ(I) b2a

′
jxj for any b1, b2 ∈M. We show that the com-

bined token tok = b1tok1 + b2tok2 is a valid decryption token for the composed
labelled program P, actually tok = TokenGen(sk,P). In details:

tok = b1tok1 + b2tok2

= sk
( ∑
i∈[n]

b1airi +
∑
j∈[n′]

b2a
′
jr
′
σ(j)

)
· P

= sk
(∑
i∈I

(b1ai + b2a
′
i)ri +

∑
i∈[n]\I

b1airi +
∑

j∈[n′]\σ(I)

b2a
′
jr
′
j

)
· P

= TokenGen(sk,P)

The set I in the second last equality is the one defined in (5), that is `i = `′i=σ(j)
for all i ∈ I and therefore ri = r′i = PRFk(`i). By the correctness of the TokenGen-
TokenDec algorithms, we derive that tok is a valid decryption token for sk2,
ct = Eval(f, ct1, ... , ctñ). It is straightforward to generalise this reasoning to
multiple labelled programs P1, ...Pt as long as all the labels coincide on the first
two entries.
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