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Abstract. The increasing adoption of cryptocurrencies poses the crit-
ical challenge of secure crypto-asset custody, where the loss of private
keys results in irreversible fund inaccessibility. Unlike traditional bank-
ing, cryptocurrency wallets often lack recovery mechanisms, making cre-
dential loss a significant vulnerability.

This paper explores existing solutions adopted by custodians to mitigate
this risk, including reliance on centralized mechanism, multi-signature
wallets, and advanced multi signature schemes that compute threshold
signatures. While centralization has high trust risks and multi signatures
lack universal support, threshold signatures offer a promising distributed
approach. The paper analyses the requirements for effective credential
loss solutions, evaluates popular methods, and proposes tentative solu-
tions aimed at reducing resource overhead. Furthermore, it outlines the
design and algorithmic properties of a potential ideal solution.
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1 Introduction

The increasing diffusion of cryptocurrencies and blockchain technologies has
driven significant advancements in cryptographic research, highlighting the crit-
ical importance of secure crypto-asset custody. Cryptocurrency wallets serve as
digital repositories enabling users to manage their crypto-assets. These wallets
usually rely on asymmetric cryptography: each user has a public key, which is
usually referred as the “address” and it is used to receive transactions, and a
private key, that is used to authorize transactions and grants ownership of the
associated funds. The private key effectively represents absolute control over the
digital assets held within the wallet and represents a critical point of failure:
losing the private key could mean losing the entire content of the wallet.
Indeed, unlike traditional banking systems, where account recovery is often
possible through centralized authorities, cryptocurrency wallets usually do not
offer such solutions: once the private key is irretrievably lost, the associated
digital assets become permanently inaccessible, effectively locking the funds away
forever. This issue is exacerbated by the complexity of managing and securely
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storing these cryptographic credentials: users are highly vulnerable to human
error, hardware failures, and attacks targeting private key theft.

The task of mitigating the risk of credential loss represents a critical challenge
in the context of cryptowallet custody. Narayanan et al. |26} Sec. 4.2] highlights
the security vulnerabilities of online wallets, emphasizing the need for offline
solutions. A clear explanation of the challenges is provided by Dave [12].

In this context, the three main solutions investigated in literature are:

— to rely on a single trusted custodian that takes (full) responsibility of key
management. This kind of centralization is usually against the “spirit” of
blockchains, that have the decentralization as one of the main selling point.
Moreover, this approach introduces a new single points of failure: these type
of custodians are high value targets for criminal takeovers [9];

— to use multi-signature wallets (available for some cryptocurrencies, e.g. Bit-
coin |25]) where the signatures are standard, but funds may be moved out
of that wallet only when a sufficient number ¢ of signatures corresponding
to a prescribed set of n public keys (e.g. user and guardians) is provided.
Unfortunately, this approach is not supported by every cryptocurrency (e.g.
Ethereum |7]) and easily identifiable;

— to distribute the control of the wallet through advanced multi-signature
schemes, in particular with threshold-like policies. Briefly, a (¢, n)-threshold
signature scheme (TSS) enables a distributed signing protocol among n play-
ers such that any subset of size t can sign, whereas any subset with fewer
players cannot. The signature correspond to a single public key of which
secret is shared among n parties, i.e. user and custodians. This solution is
usually pursued by using a threshold signature compatible with the corre-
sponding centralized one, to ensure compatibility and indistinguishability.

Our work focuses on the latter, i.e. securing the user’s secret shard in event of
a credential loss for custodian’s solutions based on threshold signature schemes.

1.1 Related Works.

In the context of blockchain applications, the most important families of thresh-
old signature are ECDSA, EdDSA and Schnorr signature. The first ECDSA thresh-
old signature protocol was proposed by Gennaro et al. [17] where t + 1 parties
out of 2¢ 4+ 1 are required to sign a message. Later, MacKenzie and Reiter pro-
posed and then improved another scheme |24} 23|, which has later been further
enhanced |13, |14} 21]. The first scheme supporting a general (¢, n)-threshold was
proposed by Gennaro et al. [16], improved by Boneh et al. [6] and Gennaro et
al. |15]. A parallel approach has been taken by Lindell et al. |22]. Kondi et al.
|20] introduce a refresh mechanism, for proactive security against the corruption
of different actors in time, that does not require all parties to be online, while
Canetti et al. 8] take a similar approach and propose a protocol that streamlines
signature generation and include proactive security mechanisms.

About Schnorr, of particular relevance are Sparkle [11], EC:BLTWZ24 |[1],
and the FROST family [19, |10, [5]. Finally, several works [4} |2, [3] propose (2, 3)
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versions of the ECDSA, EdDSA and Schnorr TSS that are specifically aimed
to solve the problem of credential loss. In these protocols, one of the party (a
designated recovery-custodian) can remain online for the whole key generation
process and only return online when required in the credential recovery process.
In this way, the burden on the recovery-custodian is drastically lowered.

1.2 Owur Contributions.

The goal of this paper is twofold: firstly, we provide an overview of the critical
requirement that a potential solution to the credential loss problem should sat-
isfy. We analyse some of the most popular solutions highlighting their strength
and weakness. Lastly, we provide tentative solutions to the problem, that aims to
minimize the bandwidth, memory and communication rounds required but still
lack to fully solve the problem. Therefore, we describe a potential ideal solution
design and the algorithmic properties it must achieve.

2 Credential Loss Problem

The credential loss problem in the crypto-wallet custodian scenario is described
as the problem of letting a user U to backup its secret shard z and provide such
backup c to a different node S, which we call storer, for allowing future recovery
in the event of U’s loss of the secret. The storer S represent a valuable target
for an attacker, so for safety reason the backup strategy should consider the
eventuality of S being corrupted. For this reason, S is considered a malicious
actor with the goal to obtain the secret shard from the backup meaning, formally,
the security should hold against at least an honest-but-curious adversary or
actively malicious, i.e. an adversary that actively deviate from the protocol, to
any extend meaningful for the application’s scenario.
We require a solution to such problem to achieve several requirements:

> correctness: if the backup c is correctly produced and the protocol between
U and S is honest executed, the honest execution of the recovery protocol
will always allow U retrieving its secret shard z;

> identifiable misconduct: both the backup and recovery protocols should allow
a prompt identification of dishonest protocol’s execution and the precise
identification of the malicious actor misbehaving;

> verifiable generation: the backup generation protocol should let U provide
formal reassurance 7 to S that the c is the correct computation of the backup
of the secret shard z. The reason of such requirement is to guarantee to U
honestly computing the backup that the recovery protocol will be success-
ful. This implies that the correctness responsibility falls on S. Clearly, a
maliciously computed backup would be immediately identified aborting the
backup protocol thus guaranteeing S that only valid backup are stored.

> verifiable storage: the backup protocol should be considered terminate only
when there is formal reassurance that the backup is correctly received and
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stored by S and can be used during the recovery protocol to showcase S the
correct reception of c. In other words, S must provide formal guarantees to
U that the backup c was received which can be later used by U to highlight
the successful backup generation and transmission.

These requirements interact to reassure both parties that the backup pro-

cedure is correctly computed and handled, even when the actors are untrusted
and maliciously trying to maximize their profit at the other’s expenses.

We suggest a formal notation for the abstract procedures required by a pos-

sible solution and depict in Figure [l| the general communication layout:

GenBackup (z, sky, pkg) — c: the generate backup procedure takes in input
the secret to backup z, the users secret key sk, the storer public key pk;;
and outputs the backup ¢ which contains a generation proof ;

VerBackup (c, pky, pkg) — {0, 1}: the verify backup procedure takes in input
the backup ¢ containing a generation proof 7, the public key of the user and
the storer. The procedure outputs {0,1} indicating the proof’s correctness;
VerStorage (c,skg, pky;) — o: the storage verification procedure takes a backup
¢, the storer secret key skg and the user’s public key pk;;, and outputs a proof
of correct reception and storage of the backup to be verified by the user;
Recover (o, pky, pkg) — ¢: the recovery procedure takes the storage proof o
and the public keys of the two parties and outputs the backup ¢ which allows
the user to recover the secret z;

z GenBackup [——> ¢ —> | VerBackup D
sky —> O

store ¢ Storer pkg
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Fig. 1: General diagram of the backup and recovery procedures.

Any solution must accept the existence of natural problems introduced when

considering the backup handling, e.g. the procedures required to securely handle
the backup or the fact that even an honest storer might lose the backup by
accident or because of hardware failure. Trivially, these events cannot be solved
directly by the protocol but only by considering a more resilient backup strategy,
e.g. using certified devices and cryptographic primitives and executing multiple
redundant backup procedure with independent storer to increase the resilience.
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Despite the importance in the applications, we leave as out-of-context the
ability of incorporating a rewarding mechanism governing the backup procedure.
Briefly, the backup and recovery procedure might be coordinated by a smart
contract that enables an honest storer to be rewarded for their backup service
or any actor can be punished whenever they do not follow the backup protocol
correctly. These solutions are uncommon because of the protocol’s complexity.

3 Tentative Solutions

We present two tentative solutions which partially solve the credential loss prob-
lem, since both come up short to be a fully satisfactory solution. Indeed, first we
propose a very efficient and naive solution that lacks some critical verifiability
guarantees. Afterwards, we propose a solution that offer high security guarantees
but is rather inefficient. We denote with U the user, and with S the storer.

3.1 Naive Solution

The most naive solution is to merely use a symmetric encryption scheme (E, D)
and let U provide as backup to S the encrypted secret share. Intuitively, U has
a backup symmetric encryption key k that is safely stored long term. To create
a backup, U encrypts its own share z with sk, i.e. cg = E (k,z), and signs the
resulting ciphertext Sign (sky, cpy) and obtains the signature o The backup is
composed of the ciphertext and the signature ¢ = (cy, o).

The storer can verify the authenticity of the provided backup and reply with
a receipt og by signing the received backup. S must store the tuple (g, cy, o)
which is sent back to U when the recovery procedure is called. The recovery is
trivially obtained by decrypting the backup D (k,cy). Observe that the signa-
tures might be generated with newly generated signing keys causing additional
round of communication to exchange and authenticate such keys forcing a less
practical protocol. Overall, the naive solution has clear advantages:

> the solution is easy to implement, fast and efficient. The backup is compact
and the effective storage cost is dominated by twice the signature size which
can be made quite small with an appropriate choice of a secure signing
primitive;

> since the backup c is signed by S, U can be sure that S received the correct
backup. When recovering, the same verification forces .S to provide the same
backup used during the receipt og generation. These two verifications forces
the S to store and retrieve the received backup;

> The security of U is perfect for an appropriate choice of the symmetric
encryption scheme. For a secure primitive, S cannot learn anything from the
ciphertext ¢y and, as said above, he is sure that the ciphertext is the one
created at the beginning;

> U cannot call multiple recovery procedure to gain additional shards. This is
caused by the encrypted material being computed entirely by U, thus when
the backup is retrieved back, the content does not lead to any additional
knowledge.
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Despite all the positive points, the solution completely lacks the ability to
verify that the provided ciphertext cy is indeed a correct encryption of the secret
shard z, i.e. the suggested procedure VerBackup . This is a problem since the
user can encrypt the wrong data (maliciously or not) and even in the scenario of
following the backup protocol correctly, the recovery of the secret shard would be
impossible. This failing scenario identifies the wrongdoing responsibility on U.
However, this is undesirable for real-world application since it implies a complete
access loss to the user’s wallet.

3.2 Knowledge Extractor Solution

The second proposed solution aims to solve the verifiability problem of the naive
solution, ensuring that U encrypted the real secret shard z at a higher compu-
tational and storage cost.

The main idea is to exploit the algebraic relation between the user’s public key
pky and his secret share z = sk to build an online-extractable zero knowledge
proof in such a way that the proof’s transcript can be used as recovery material.
More specifically, U generates an asymmetric encryption scheme (e.g. ElGamal)
backup key-pair (sk, pk). Let IT be a sigma protocol that allows U to prove the
knowledge of z, with pk;; public and let Ch be the challenge space of II. We
require that IT is special sound which, in practice, is not a restrictive request
since most known sigma protocol satisfies this property. The interactive backup
procedure between U and S is defined as:

—_

. U computes the first message cmt of II as intended;

[\V]

. for every possible challenge ch; in Ch, U computes the corresponding response
rsp;, picks a random nonce r; and computes t; = Enc (pk, rsp,;7;);

. U sends all the {t;};c|cn| to S;

. S picks a vector of random challenges v s {0, 1}/" and sends it to U;

. U replies by revealing (rsp,,,7,,) for each i € {1,...,|Ch[};

S O s W

. to verify the response, S checks that t., < Enc (pk, rsp%;r%) for each index
i € {1,...,|Ch|} and then run the verification algorithm of IT on input
(cmt,chv,rspw). If both checks are correct, then S computes the receipt.
Otherwise, the backup is improperly generated.

The above interactive protocol can be turned into a non-interactive one using
the Fiat-Shamir Transform or, with some subtle modification due to our needs,
the Unruh transform [27]. The soundness error of the above protocol is ﬁ,
thus it is possible that multiple parallel repetition are needed to achieve an
application’s appropriate level of soundness. The backup is simply the transcript
of the zero-knowledge protocol between U and S which is stored and provided
whenever requested. To retrieve the secret shard z, U decrypts all the ¢; received
and, due to the special soundness of IT, extract z.

This knowledge extractor solution provides some clear advantages:
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> the solution allows the usage of any zero-knowledge protocol II that proofs
the knowledge of the secret shard with respect to a public value, e.g. the

secret shard z = sk for the public key pky = sky - B;

> the backup procedure can be made both interactively or non-interactively
thus better adapting to different application scenarios;

> the security of U is guaranteed by the choice of an appropriate encryption
scheme (Enc, Dec). The security requirement would be that a S cannot learn
anything from the ciphertexts t;. In addition, the zero-knowledge property
of IT provides additional security guarantees for the revealed challenges;

> as before, U cannot call multiple recovery procedure to gain additional
shards. The encrypted material is computed entirely by U, so receiving it
back does not lead to any additional knowledge;

> U cannot produce wrong backup material. By construction, the backup ma-
terial is a proof of knowledge of the secret shard z which is extracted during
recovery using the special soundness.

> depending on the choices made for the sigma-protocol and encryption scheme,
proving the UC-security of the backup might be simplified because of the
more natural simulatability of the solution’s mechanism.

The main solution’s disadvantage is the direct inefficiency caused by the
soundness guarantees. The transcript is longer than the naive solution, even
when IT is compact, since U needs to compute all the possible response for all
the possible challenges and the usage of an asymmetric encryption scheme.

Regardless, the main problem is that the protocol must be repeated to achieve
the appropriate soundness guarantees. For example when |Ch| = 2, one might
require a 27 soundness level where A\ ~ 80—128 indicates the number of pro-
tocol’s executions that must be made. When compared with the naive solution,
the computational costs are clearly higher while the storage space required is
approximatively two order of magnitude higher.

4 Future Directions

As previously discussed, the tentative solutions encountered unwanted trade-off.
One solution prioritized storage and computational efficiency, achieving com-
pact backup but, unfortunately, without providing verifiability assurances on
the backup correctness, key requirement for the cryptocurrency custodian’s ap-
plications. The second solution provides strong security guarantees and full ver-
ifiability at a significant space-intensive and computationally inefficient cost,
posing practical limitations for real-world deployment.

We are therefore left with a central challenge to achieve simultaneously a
compact and confidential backup, possibly based on encrypting the secret shard,
and an efficiently verifiable proof of backup’s correctness, e.g. a proof of cor-
rect encryption, without compromising either security or practicality. In other
words, our ideal solution would be the efficient naive solution with the verifiable
guarantees provided by the knowledge extraction one.
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4.1 Defining the Ideal Solution

The critical challenge lies in finding a secure symmetric encryption scheme that
allows an efficient zero-knowledge proof that the message encrypted is indeed the
secret shards, i.e. the proof m must guarantee the knowledge of a secret shard z
that is both the plaintext of a correct encryption ciphertext ¢ = E (k,z) and the
logarithm of the user’s public key z - B = pky;.

To address this challenge, the proof can be obtained using Succinct Non-
interactive ARguments of Knowledge (SNARKSs) or Scalable Transparent AR-
guments of Knowledge (STARKS). These advanced cryptographic tools offer the
advantage of producing short, easily verifiable proofs, providing strong assur-
ances about the correctness of the encryption and the logarithm knowledge.
However, caused by the extensive generality of such tools, this approach comes
with increased costs, both in terms of the computational resources required to
generate the proof and the storage overhead due to the size of the proof itself
which is incomparable with the naive solution’s efficiency. Despite the fast de-
velopment of more efficient SNARKs/STARKS, we believe that the ideal solution
should have an ad-hoc design that maximizes efficiency without requiring too
complex proving frameworks.

For this reason, we envision the ideal solution to use more classical Non-
interactive Zero-Knowledge (NIZK) protocols, e.g. Schnorr or Chaum-Pedersen
for the discrete logarithm, in conjunction with a symmetric encryption scheme
from which it is possible to extrapolate particular algebraic behaviours, e.g. the
somewhat homomorphic property of ElGamal.

During our investigations, we identify a key obstacle which is the need to
encode the secret shard into a compatible algebraic object, e.g. a scalar into an
elliptic curve point in the case of elliptic curve ElGamal. This encoding must
simultaneously preserve a useful algebraic structure for efficient zero-knowledge
proofs and allow for straightforward decoding back to the original secret. A
simplified example with the goal of highlighting the issue especially in the elliptic
curves scenario, we would like to have both the curve’s algebraic group operation
plus an easy method to evaluate the discrete logarithm. Clearly, this duality is
not achievable with the known algebraic encoding, i.e. the mapping from x to
x - B, or the Koblitz [18] elliptic curve encoding.

4.2 Conclusions

Future research, focused on identifying an implementable ideal solution, should
prioritize exploring novel encryption methods that allow for verifiable proof of
correct encryption using classical zero-knowledge protocols, thereby circumvent-
ing the complexities and costs associated with SNARKs/STARKs. A crucial di-
rection involves investigating innovative encoding techniques for secret shards
into, for example, elliptic curve points. These techniques should maintain a rich
algebraic structure suitable for protocols like Schnorr or Chaum-Pedersen, while
also enabling efficient and direct decoding back to the original secret. This might
involve exploring non-standard encoding maps or targeted modifications to ex-
isting encryption schemes.
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