
Influence of Faulty Signatures in Batch Verification
in VANET

Sujash Naskar∗, Carlo Brunetta †, Gerhard Hancke‡, Tingting Zhang∗, and Mikael Gidlund∗
∗Department of Information Systems and Technology, Mid Sweden University, Sweden

† Independent Researcher, was with Simula UiB, Bergen, Norway
‡Department of Computer Science, City University of Hong Kong, Hong Kong

Email: ∗{firstname.lastname@miun.se}, †{brunocarletta@gmail.com}, ‡{gp.hancke@cityu.edu.hk}

Abstract—Vehicular Ad-Hoc Networks (VANETs) enable ve-
hicles to share critical data for safety and traffic management.
To improve efficiency, batch verification is used to authenticate
multiple vehicle-to-vehicle (V2V) messages at once. However,
proposed solutions avoid error-prone environments with faulty
signatures because of the higher analytical complexity, thus con-
sidering only error-free scenarios. This paper considers the error-
prone scenario and proposes a novel strategy that allows optimal
aggregation computations and reuse of such pre-computations
to minimize the computational cost of identifying the faulty
signature in a batch. Our analysis shows that batch verification
outperforms standard methods when the error rate is below 40%,
with advantages up to 63% in typical scenarios. We provide
guidelines for when batch verification is more efficient and
suggest improvements to further optimize its performance in
VANETs, offering a practical solution for real-world applications.

Index Terms—Batch Verification, Optimized Authentica-
tion, Invalid Signatures, ECDSA, Vehicular Ad-Hoc Networks
(VANETs)

I. INTRODUCTION

The rising demand for safer and more efficient transporta-
tion systems has accelerated the adoption of Vehicular Ad-
Hoc Networks (VANETs) technologies. The main objective
of these technologies is to facilitate direct communication
between vehicles, enabling them to share crucial driving data
that enhances the overall driving experience while ensuring
greater passenger safety and comfort. Often referred to as
vehicle-to-vehicle (V2V) communication, this allows vehicles
to broadcast messages that typically include information such
as speed, direction, route mapping, braking actions, alerts, and
emergency signals directly to surrounding vehicles, fostering a
more connected and responsive transportation network. How-
ever, since V2V communication occurs over public channels, it
is crucial to authenticate the sender of each message before it is
accepted by the receiving vehicles. This authentication process
is essential to prevent unauthorized entities or adversaries
from sending malicious messages that could lead to traffic
hazards, accidents, or even fatalities. Therefore, verifying the
authenticity of each V2V message is mandatory for ensuring
passenger safety in VANETs.

A critical challenge in this context is the time-sensitive
nature of message verification. Existing research indicates that

This work was part of the project “Next Generation Industrial IoT (NIIT),”
funded by the Swedish Knowledge Foundation (KKS).

V2V messages must be authenticated within approximately
300ms [1]; otherwise, the messages become invalid and are
discarded. This time constraint, known as the lifespan of a
V2V message, presents significant challenges, especially in
scenarios with a high density of vehicles, where each vehicle
is broadcasting numerous driving-assisted messages. In such
cases, verifying every individual message within such a short
time frame becomes impractical using standard single-message
verification methods. To address this issue, researchers have
proposed batch verification methodologies, which allow a set
of messages, or a batch, to be verified in a single operation.
This approach enables the receiving vehicle to authenticate
numerous V2V messages before they expire, offering a much
more efficient solution than verifying each message individu-
ally (Figure 1).

However, most existing batch primitives verify the whole
batch meaning that a single error can cause the verification to
fail. This property is impractical for the VANET applications
since message signatures transmitted over public channels
might be corrupted or maliciously altered; thus, the application
would require the algorithm to pinpoint the exact locations of
faulty signatures if a fails verification. As a result, the impact
of corrupted or faulty message signatures on the computational
efficiency of batch verification strategies remains unclear,
especially in understanding how many messages a vehicle can
verify with the 300ms threshold in the presence of invalid
signatures. Therefore, the unexplored research question is,
if the batch of L signatures has f invalid ones that the
algorithm must correctly identify, is the batch verification still
more efficient? This research gap, where the impact of faulty
signatures on the effectiveness of batch verification remains
unexplored, serves as the motivation for our study.

We consider the batch verification primitive (ECDSA∗)
proposed by Kittur and Pais [2] and designed as a secure
variant of the standard elliptic curve digital signatures. We
propose a novel approach defined by an optimal aggregation
procedure together with a verification strategy. Briefly, the
aggregation updates sequentially with each new signature
and stores specific pre-computed aggregation which are later
used in the verification phase to minimize the number of
computation and allowing the complete identification of all
the bad signatures.

Beyond analyzing the strategies complexity, we rigorously

Standard Verification

Aggregate

✓/ ✗

(m0, σ0)Ver✓/ ✗

(m1, σ1)Ver✓/ ✗

(m2, σ2)Ver✓/ ✗

Batch Verification

BatchVer

Aggregate Ver

✓/ ✗

Fig. 1: Comparison of single and batch verification strategies

evaluate the impact of faulty signatures on verification effi-
ciency and demonstrate through empirical analysis that our
approach allows a simplified analysis of batch efficiency in
the presence of errors and how batch improves the verifica-
tion computation time under various error scenarios, offering
insights that are absent in the literature.

A. Contributions

Our main research contributions are as follows:
• Optimized ECDSA∗ Batch Verification: We introduce a

novel strategy for optimizing the aggregation and verifica-
tion of batch signatures in ECDSA∗, which significantly
reduces computational overhead. Our method not only
minimizes the required computations but also provides
precise identification of faulty signatures within the batch,
enhancing the robustness of the verification process.

• Comprehensive Empirical Efficiency Analysis: We
conduct extensive simulations to evaluate the perfor-
mance of both batch and standard verification algorithms
under various error probabilities. The resulting data offers
detailed insights into computational costs across different
scenarios. Additionally, we derive specific relationships
between error rates, batch sizes, and input bandwidth for
a fixed time threshold of 300ms, illustrating the practical
impact of these parameters on the number of verifiable
signatures.

B. Related Works

A common cryptographic approach to achieve batch verifi-
cation of message signatures is the use of bilinear pairing [3],
defined as e : G1 ×G2 → GT , where GT is the target group
for two elliptic curve group G1, G2. This strategy is vastly
used in literature by Bagga et al. [4], Maurya et al. [5], Liu
et al. [6], Feng et al. [7]. However, if one or more signatures
are invalid, the entire batch gets rejected. None of the state-of-
the-art schemes has considered the presence of faulty message
signatures, and therefore, it is unclear what happens when
a batch fails verification. Also, pairing-based operations are
computationally expensive [8], which makes them inefficient
for verifying a significantly large number of V2V messages [9]
within a given 300ms time threshold.

Another popular approach is to use ECDSA∗ signature
verification scheme modified to perform batch verification. As
proposed by Kittur and Pais [2]. ECDSA∗ signatures are more
computationally lightweight than pairing-based signatures [8],

they are highly efficient for verifying numerous V2V mes-
sages. The computation cost for an ECDSA∗ batch verification
is the same as computing a single standard verification plus
some extra computation for the arithmetic aggregation of
signatures that depends on the batch size. This strategy is
adapted in several contribution by Lin et al. [10], Yan et al.
[9], Zhang et al. [11], Dwivedi et al. [12]. However, both
the extra arithmetic computations and the number of standard
verifications increase in the presence of error, motivating
the community’s doubt about its efficiency when introducing
faulty signatures. Also, the general ECDSA∗ batch verification
techniques are vulnerable to signature forging attacks that
allow an adversary to forge malicious message signatures to
get verified as valid.

C. Paper Organization

The paper is organized as follows: Section II covers
ECDSA∗ batch verification preliminaries. Section III intro-
duces the proposed recursive batch verification algorithm with
optimizations. Section IV evaluates its efficiency in various
error scenarios against single verification. Finally, Section V
provides conclusions.

II. PRELIMINARIES

ECDSA∗ Signatures: The ECDSA∗ algorithm is a vari-
ation of the Elliptic Curve Digital Signature Algorithm
(ECDSA∗) [13]. Briefly, after initializing and generating the
appropriate key pairs, the primitive computes a signature σ
on a message m using the Sign(pp, sk,m) algorithm. Unlike
ECDSA, where a signature consists of a coefficient and the
x-coordinate of an elliptic point, ECDSA∗ signatures consist
of an elliptic curve point and a finite field coefficient. Stan-
dard single verification of a signature is performed via the
Ver(pp, pk, (R, c),m) algorithm. We consider the ECDSA∗
batch verification primitive (Figure 2) proposed by Kittur and
Pais [2] which introduces additional pairwise co-primes coef-
ficient bi which guarantees the unforgeability of the signature
scheme.

VANET: We assume a public key infrastructure-based au-
thentication scenario in VANET following the system model
proposed by Naskar et al. [8], where registered vehicles broad-
cast signed messages using public parameters (pp) provided
by trusted certification authorities or CAs. Signed messages
can then be verified using their corresponding public key
and the public parameters. As presented in Figure 2, vehicle
perform the Sign(pp, sk,m) algorithm to sign a V2V mes-
sage and broadcast it to public channel. A receiver vehicle
uses the Ver(pp, pk, σ,m) to perform single verification or
uses BatchVer((pp, bI), pk, σI ,mI) to batch verify multiple
received messages.

III. PROPOSED BATCH VERIFICATION AND STRATEGY

Optimizing execution time is essential for the VANET
application to speed up the verification process. For this
reason, we provide a comprehensive description of strategies

Init

pp← (G, p,G)

return pp

Sign(pp, sk,m)

r ←$ {2, . . . , p− 2}
R← r · pp.G
x← x(R)

c← nr−1(H(m) + sk · x)
σ ← (R, c)

return σ

Ver(pp, pk, σ,m)

x← x(R)

w ← c−1

u← H(m) · w
v ← x · w
R← u · pp.G+ v · pk

return x(R)
?
= x

KGen(pp)

r ←$ Zp

(sk, pk)← (r, r · pp.G)

return (sk, pk)

BatchVer((pp, bI), pk, σI ,mI)

for i ∈ I do

xi ← x(Ri)

wi ← c−1
i

ui ← H(mi) · wi

vi ← xi · wi

R←
∑
i∈I

bi ·Ri

U ←

∑
i∈I

biui

 · pp.G
V ←

∑
i∈I

bivi

 · pk
return R

?
= U + V

Fig. 2: Algorithms for ECDSA∗ signature scheme with both
standard and batch verification algorithms.

and algorithms that optimally minimize the batch verification
execution time at any vehicle.

We split the batch verification into three phases: a prepara-
tory phase where message-signatures are manipulated to sim-
plify the computations in next phases; an aggregation phase
where the prepared content is aggregated into a singular
element; and a verification phase where the aggregated element
is verified. We observe that the batch verification (Figure 2)
has a linear system structure R

?
= U + V , meaning that the

sum can be partitioned into two smaller sets I = I1 ∪ I2,
formally, ∑

i∈I

(· · ·) =
∑
i∈I1

(· · ·) +
∑
i∈I2

(· · ·)

which corresponds to two independent batch verification where
the verification for I2 is obtained from the subtraction between
the other verifications. This property allow us to store pre-
computed aggregated values which are used to identify bad
signatures during the batch verification.

Consider the timing to execute a finite field sum/product
as T+, T× and, similarly, an elliptic curve sum/ product as
TE+, TE×. We denote MF,ME the space necessary to store a
field or curve element, respectively while Th indicates the tim-
ing for computing a hash. We assume that testing the equality
between two elements will have zero cost as it takes negligible
computation cost, while subtractions/inversions will have an
equivalent computation cost, such as additions/multiplications,
as they require nearly same execution times. This section
considers a batch size of any L ∈ N, provides a thorough
analysis of the costs for each phase, both for standard and
batch verification. Finally, we analyse the verification phase
cost in the presence of errors.

Sequential aggregation Ψi,S(x)

i← i+ 1

i =
∑
j

2j · ij , ij ∈ {0, 1}

m = min
j
{ij ̸= 0}

t← x

for j ∈ [0,m− 1] do

t← t+ S[i+ 1− 2j]

S.append (t)

Final aggregation Ψ(i, S)

i =

m∑
j=0

2j · ij , ij ∈ {0, 1}

σ̂I ← S[i− 1]

for j ∈ [0,m− 1] do

if ij = 1 then

l←
j∑

l=0

2l · il

σ̂I ← σI + S[i− 1− l]

return σ̂I

Fig. 3: Sequential aggregation strategy.

A. Preparatory Phase

During the preparatory phase, both single and batch veri-
fication algorithms must compute (ui, vi) from any message-
signature pair received and store such values in memory later
used for verification. The total of the costs is

L · (Th + 3T×) (1)

Additionally, the batch verification must multiply each
(Ri, ui, vi) by bi with bit-length b≪ 256. Due to the signif-
icant difference in size, we consider a naive implementation
of the double-and-add algorithm for elliptic curve scalar mul-
tiplication, with timing TE×b

for a scalar of length b bits. We
obtain a total additional preparatory cost of:

L · (2 · T× + TE×b
) ≤ L · (2 · T× + 2 · b · TE+) (2)

Observe, if L = 1, no bi multiplication is necessary.

B. Aggregation Phase

The aggregation phase computes the sum of the L tuples
(biRi, biui, bivi) for a total cost of:

(L− 1) · (2 · T+ + TE+) (3)

To minimize the device’s computational overload, the aggre-
gation is executed as soon as each signature is prepared se-
quentially. The specific pre-computed aggregations are stored
into the list S that will contain L partial aggregations used later
by the verification strategy if an error occurs with a memory-
cost of L ·(2MF+ME). We consider the strategy of Figure 3
instantiated with an empty list S and counting index i = 0. For
every new prepared signature x, the device executes Ψi,S(x)
which updates both the counting index and adds an entry to
S. When the aggregation is concluded, the final aggregation
Ψ(i, S) is executed which produces the total aggregated value
σ̂I = (

∑
I biRi,

∑
I biui,

∑
I bivi). The stored values are the

left branches (I1) of all the possible verifications.

C. Verification Phase

For the standard verification, the total cost is trivial to
compute and is not affected by errors. For each of the L

signature, the algorithm checks if R ?
= ui ·G+vi ·pk meaning,

L · (2 · TE× + TE+) (4)

Strategy Φ(I, C)

if C = 0 then return I

if |I| = 1 then return {}
I1 ∪ I2 ← I ∧ |I1| = max

2j
{2j < |I|}

C1 ← BatchVer((pp, bI1), pk, σI1 ,mI1)

C2 ← C − C1

return Φ(I1, C1) ∪ Φ(I2, C2)

Fig. 4: Verification strategy, recursive algorithm.

σ1..4

σ1,2

σ1 σ2

σ3,4

σ3 σ4

σ1..4

σ1,2

σ1 σ2

σ3,4

σ3 σ4

Fig. 5: Influence of two invalid signatures and the amount
of verifications required. Nodes with thicker border are the
computed verifications, red nodes have Ci ̸= 0, blue nodes
have Ci = 0 and white nodes are left unused by the strategy.

For batch verification, the total cost depends on the pres-
ence and positioning of errors. We consider the strategy Φ
(Figure 4) instantiated with all the indices I = {1, . . . , L} and
C = BatchVer((pp, bI), pk, σI ,mI) where C = R − U − V
and verification is done using the precomputed σ̂I .

Briefly, if the current verification is valid, the strategy
returns all the current indices. Otherwise, if C ̸= 0 then
there are errors thus the partitioning plus the verification on
I1 obtaining C1 used to compute C2 via subtraction and not
by executing a verification. The I1’s precomputed inputs are
stored into S thus each verification costs like a single standard
verification (Equation (4)). The strategy splits the problem
into two smaller ones and correctness is maintained thanks
to linearity.

The invalid signatures’ positioning influences the number
of verification required by the strategy, an example with four
signatures is highlighted in Figure 5 where the errors are either
contiguous (σ1, σ2) or not (σ1, σ4).

The strategy executes one standard verification on the total
aggregated value. If errors are present, the cost depends on
the number of additional single verification required. Since
our strategy is deterministic, a best and worst scenario can
be evaluated, e.g. our strategy implies that the best scenario
happens whenever all the errors are contiguous and at the end
of the batch while the worst scenario happens whenever the
errors maximise the number of subtrees affected. We denote
with cf such a total amount which includes the first one too.
Furthermore, for each additional verification, the strategy com-
putes a standard verification and a curve subtraction between
the verification results for a total of:

cf · (2 · TE× + TE+) + (cf − 1) · TE+ (5)

TABLE I: Execution times of cryptographic operations.

Symbol Description ≈ Timing (ms)

T+ Addition of two field elements 0.0016
T× Multiplication of two field elements 0.0017
Texp Exponentiation operation 0.0321
TE+ Point addition on secp256k1 0.0044
TE× Point multiplication on secp256k1 0.7439

Th Hash operation 0.0048

IV. EMPIRICAL EVALUATION

We adopt a methodology used by several prior stud-
ies [14, 15, 16, 17] for the computational comparison between
algorithms. The approach analytically evaluates the costs of
the algorithm and later estimates an execution timing using
the empirical timing for basic operations. The basic operation
execution timings are reported in Table I. The execution
timings are obtained using an Intel i7-6500U @ 2.50GHz
CPU, 16GB of RAM. The cryptographic primitives are im-
plemented in C using the OpenSSL library [18] on a Linux
virtual environment. We use the secp256k1 curve [19] which
is defined on a 256-bit prime field with a 256-bit order.

The VANET application requires messages to be verified
with a maximum delay of 300ms. We consider such timing
as a threshold and want to answer the question: how many
messages can be verified within the threshold in the presence
of invalid signatures? We consider the device to have signa-
tures in input measured in signature per second (sps) which
can be identified as input bandwidth and with an error-rate of
ϵ. In the evaluation, we assume the two following scenarios:
i) error-free and ii) with errors.

A. Error-free Scenario

Whenever all signatures are valid, the computational cost
for both verifications can be easily computed by considering
the sum of the correspondent preparatory, aggregation, and
verification phases. The cost for standard verification is the
sum of Equations (1) and (4) while for batch verification is the
sum of Equations (1) to (3) and (5) with cf = 1. We provide
the timing for different signature amounts in Figure 6.

In scenarios where batches contain only error-free mes-
sages, batch verification significantly outperforms standard
single-message verification, processing nearly ×10 as many
messages, as illustrated in Figure 6. The figure also pro-
vides a detailed breakdown of the computational costs for
different phases of batch verification highlighting how the
batch preparatory phase is the most expensive because of
all the scalar multiplication by bi. The massive gain is the
consequence of the usage of the naive double-and-add multi-
plication algorithm instead of the generic one because of the
substantially lower timing TE×b

< TE×. The limit scenario
where the generic algorithm is used (i.e. TE×b

= TE×), the
gain is reduced to ×2.

B. Error Scenario

We define the error-rate ϵ as the percentage of bad signatures
in the batch of size L which will force a verification fail for

Fig. 6: Error-free timing of the single standard (first figure) and
the batch verification (second figure). All the computational
phases are highlighted.

Fig. 7: Average error-rate achieving in 300ms of verification
time for a specific number of signatures.

any pre-computed aggregation in which these bad signatures
are present. This means that increasing the error-rate ϵ implies
an increase in the verification’s amount cf which variates
between the best and worst scenarios. We simulate different
uniform random error-positions to obtain an average scenario
representing the most likely scenario in practice. We plot in
Figure 7 the error-rate achievable by the batch verification in
the different scenarios for different batch sizes with a highlight
on the intersection of such curves and the standard verification
one.

When considering the presence of errors, batch verification
time is influenced by the error rate ϵ and how errors are
distributed in the batch. Therefore, it’s important to analyze
achievable error rates for the 300ms threshold compared to

Fig. 8: Bandwidth of the verification algorithms. Gray lines
represent batch verification with error-rates at steps of 5%.

the maximum signatures the standard algorithm can verify.
As highlighted in Figure 7, the worst error-rate achievable is
∼ 42% meaning that for lower error rates and the same batch
size, the batch verification will always be faster than the stan-
dard one. The best error-rate achievable is ∼ 91% when errors
are contiguously located at the end of the batch. However, the
best case represents a borderline case and, therefore, does not
reflect a real application scenario. From the simulation, the
average error-rate achieved for random positioning is ∼ 62%,
at which point the average case is equivalent to the standard
verification. The average case represents a real application
scenario where errors are averagely distributed.

C. Bandwidth Analysis

As our last question, we are interested in analysing the
verification bandwidth, i.e. the percentage of verifiable sig-
natures for a stream of signatures. We plot in Figure 8 the
achievable band for the standard verification and the batch
one with additional highlights for increasing error rates.

As displayed in Figure 8, the batch verification with average
error positioning allows a higher bandwidth than the standard
algorithm. Increasing error-rates are displayed too highlighting
how increasing error-rates reduce the verification bandwidth.

During our simulations, we observe a bursting effect appear-
ing whenever increasing the bandwidth over the verification
algorithm’s limit. For a period of time, the scheme absorbs the
higher workload and accumulates delay which increases until
the 300ms verification threshold. At that point, the algorithm
must discard expired signatures and, intuitively, recovers time
from the delay and can verify again. This behaviour can be
utilized in applications to control the signatures in input’s
bandwidth and anticipate when the device will drop expired
signatures.

D. Further Improvements and Observations

While our strategy makes the batch verification process
highly efficient, there are still opportunities to enhance compu-

tational cost and overall efficiency, pointing to potential future
work.

• The {bi} values must be sampled and applied randomly
to guarantee security, i.e. the malicious signer should be
unaware of which values are used and in which order.
For the VANET application, we suggest the vehicle to
freshly sample such values when booting-up the system
and securely store them until the preparatory phase is
executed.

• The {bi} values of proportional to the batch size and the
double-and-add scalar multiplication algorithm is used
ensuring high efficiency. However, depending on the
specific use case, {bi} can be set to a fixed size b and a
more efficient b-long scalar-multiplication algorithm can
be used, desiredably secure against side-channel attacks.

• Error-rate, input bandwidth and accumulated delay can
be monitored and should be used to act accordingly.
For example, there can be a fixed acceptable error-rate
ϵ in VANET and, whenever a receiver notices a higher
error-rate in the signatures of a sender, such behaviour
is reported to the trust authorities, which can check the
legitimacy of the sender. Also, whenever the receiver no-
tices that the accumulated delay would push expire many
signatures, the receiver can focus only on higher-priority
messages until the bandwidth returns to achievable levels.

V. CONCLUSIONS

This study not only addresses a critical gap in understanding
batch verification efficiency with faulty signatures in the
existing literature, but also provides practical insights for
enhancing batch verification efficiency of V2V communication
systems. Our analysis highlights that in most likable scenario
represented as the average case in the analysis that closely
aligns with real-world conditions, batch verification consis-
tently outperforms standard verification, maintaining high effi-
ciency even with an error rate of up to approximately ∼ 62%.
Even in the unlikely worst-case scenario, batch verification
demonstrates robust performance, sustaining efficiency with
error rates as high as ∼ 42%. The strategy applied for the
high-efficiency gain in batch computation time also ensures
protection against signature forging, ensuring the integrity
of V2V communications. For future work, sampling of the
coefficient bi and its size can be pre-determined according to
specific use case that will allow extending the application of
the batch verification strategy to other domains.

REFERENCES
[1] M. Arif, G. Wang, M. Z. A. Bhuiyan, T. Wang, and J. Chen, “A Survey on Security

Attacks in VANETs: Communication, Applications and Challenges,” Vehicular
Communications, vol. 19, p. 100179, 2019.

[2] A. S. Kittur and A. R. Pais, “A New Batch Verification Scheme for ECDSA*
Signatures,” Sādhanā, vol. 44, no. 7, p. 157, 2019.

[3] S.-F. Tzeng, S.-J. Horng, T. Li, X. Wang, P.-H. Huang, and M. K. Khan, “Enhancing
security and privacy for identity-based batch verification scheme in vanets,” IEEE
Transactions on Vehicular Technology, vol. 66, no. 4, pp. 3235–3248, 2015.

[4] P. Bagga, A. K. Sutrala, A. K. Das, and P. Vijayakumar, “Blockchain-based batch
authentication protocol for internet of vehicles,” Journal of Systems Architecture,
vol. 113, p. 101877, 2021.

[5] C. Maurya, V. Chaurasiya, and Kumar, “Efficient anonymous batch authentication
scheme with conditional privacy in the internet of vehicles (iov) applications,” IEEE

Transactions on Intelligent Transportation Systems, vol. 24, no. 9, pp. 9670–9683,
2023.

[6] J. Liu, C. Peng, R. Sun, L. Liu, N. Zhang, S. Dustdar, and V. C. Leung, “Cpahp:
Conditional privacy-preserving authentication scheme with hierarchical pseudonym
for 5g-enabled iov,” IEEE Transactions on Vehicular Technology, vol. 72, no. 7,
pp. 8929–8940, 2023.

[7] X. Feng, Q. Shi, Q. Xie, and L. Wang, “P2BA: A Privacy-Preserving Protocol with
Batch Authentication Against Semi-Trusted RSUs in Vehicular Ad Hoc Networks,”
IEEE Transactions on Information Forensics and Security, vol. 16, pp. 3888–3899,
2021.

[8] S. Naskar, C. Brunetta, G. Hancke, T. Zhang, and M. Gidlund, “A Scheme for
Distributed Vehicle Authentication and Revocation in Decentralized VANETs,”
IEEE Access, 2024.

[9] C. Yan, C. Wang, J. Shen, K. Dev, M. Guizani, and W. Wang, “Edge-Assisted
Hierarchical Batch Authentication Scheme for VANETs,” IEEE Transactions on
Vehicular Technology, 2023.

[10] C. Lin, D. He, X. Huang, N. Kumar, and K.-K. R. Choo, “Bcppa: A blockchain-
based conditional privacy-preserving authentication protocol for vehicular ad hoc
networks,” IEEE Transactions on Intelligent Transportation Systems, vol. 22,
no. 12, pp. 7408–7420, 2020.

[11] M. Zhang, J. Zhou, G. Zhang, M. Zou, and M. Chen, “Ec-baas: Elliptic curve-
based batch anonymous authentication scheme for internet of vehicles,” Journal of
Systems Architecture, vol. 117, p. 102161, 2021.

[12] S. K. Dwivedi, R. Amin, S. Vollala, and A. K. Das, “Design of blockchain and
ecc-based robust and efficient batch authentication protocol for vehicular ad-hoc
networks,” IEEE Transactions on Intelligent Transportation Systems, 2023.

[13] A. Antipa, D. Brown, R. Gallant, R. Lambert, R. Struik, and S. Vanstone,
“Accelerated Verification of ECDSA Signatures,” in International Workshop on
Selected Areas in Cryptography. Springer, 2005, pp. 307–318.

[14] A. Yang, J. Weng, K. Yang, C. Huang, and X. Shen, “Delegating Authentication to
Edge: A Decentralized Authentication Architecture for Vehicular Networks,” IEEE
Transactions on Intelligent Transportation Systems, vol. 23, no. 2, pp. 1284–1298,
2020.

[15] S. Chen, Y. Liu, J. Ning, and X. Zhu, “BASRAC: An Efficient Batch Authentication
Scheme with Rule-based Access Control for VANETs,” Vehicular Communications,
vol. 40, p. 100575, 2023.

[16] J. Shen, D. Liu, X. Chen, J. Li, N. Kumar, and P. Vijayakumar, “Secure Real-Time
Traffic Data Aggregation with Batch Verification for Vehicular Cloud in VANETs,”
IEEE Transactions on Vehicular Technology, vol. 69, no. 1, pp. 807–817, 2019.

[17] L. Wei, J. Cui, H. Zhong, I. Bolodurina, and L. Liu, “A Lightweight and
Conditional Privacy-Preserving Authenticated Key Agreement Scheme with Multi-
TA Model for Fog-based VANETs,” IEEE Transactions on Dependable and Secure
Computing, 2021.

[18] E. Käsper, “Fast Elliptic Curve Cryptography in OpenSSL,” in Financial Cryptog-
raphy and Data Security: FC 2011 Workshops, RLCPS and WECSR 2011, Rodney
Bay, St. Lucia, February 28-March 4, 2011, Revised Selected Papers 15. Springer,
2012, pp. 27–39.

[19] J. W. Bos, J. A. Halderman, N. Heninger, J. Moore, M. Naehrig, and E. Wustrow,
“Elliptic Curve Cryptography in Practice,” in Financial Cryptography and Data
Security: 18th International Conference, FC 2014, Christ Church, Barbados, March
3-7, 2014, Revised Selected Papers 18. Springer, 2014, pp. 157–175.

	Introduction
	Contributions
	Related Works
	Paper Organization

	Preliminaries
	Proposed Batch Verification and Strategy
	Preparatory Phase
	Aggregation Phase
	Verification Phase

	Empirical Evaluation
	Error-free Scenario
	Error Scenario
	Bandwidth Analysis
	Further Improvements and Observations

	Conclusions

