
IET Research Journals

Submission Template for IET Research Journal Papers

Towards Stronger Functional Signatures ISSN 1751-8644
doi: 0000000000
www.ietdl.org

Carlo Brunetta1∗, Bei Liang1, Aikaterini Mitrokotsa1

1Chalmers University of Technology, Gothenburg, Sweden
* E-mail: brunetta@chalmers.se

Abstract: Functional digital Signatures (FS) schemes introduced by Boyle, Goldwasser and Ivan (PKC 2014) provide a method
to generate fine-grained digital signatures in which a master key-pair (msk,mvk) is used to generate a signing secret-key skf for a
function f that allows to sign any message m into the message f(m) and signature σ. The verification algorithm takes the master
verification-key mvk and checks that the signature σ corresponding to f(m) is valid. In this paper, we enhance the FS primitive by
introducing a function public-key pkf that acts as a commitment for the specific signing key skf . This public-key is used during the
verification phase and guarantees that the message-signature pair is indeed the result generated by employing the specific key
skf in the signature phase, a property not achieved by the original FS scheme. This enhanced FS scheme is defined as Strong
Functional Signatures (SFS) for which we define the properties of unforgeability as well as the function hiding property. Finally,
we provide an unforgeable, function hiding SFS instance in the random oracle model based on Boneh-Lynn-Shacham signature
scheme (ASIACRYPT 2001) and Fiore-Gennaro’s publicly verifiable computation scheme (CCS 2012).

Keywords: Functional Signatures, Verifiable Computation, Function Privacy

1 Introduction

Digital signatures, introduced by Diffie and Hellman [7], is a valu-
able cryptographic primitive that provides important integrity guar-
antees, i.e., a signed message allows the receiver to verify that the
message was indeed signed by the claimed signer. Functional dig-
ital signatures (FS), introduced by Boyle, Goldwasser and Ivan [6]
as a general extension of classic digital signatures [12], allow gen-
erating signatures in a more fine-grained manner; thus, being very
useful in multiple applications, e.g., scenarios where the delegation
of signing rights has to be considered. Functional digital signatures
require a trusted authority to hold a master secret key. Given a de-
scription of a function f , the authority, using the master secret key,
can generate a limited functional signing key skf associated with
the function f . Anyone that has access to the signing key skf and
a message m, can compute f(m) and the corresponding functional
signature σ of f(m).

Let us employ an example related to photo-processing given by
Boyle et al. [6] to explain how FS works. When performing photo-
processing, a digital camera is required to produce signed photos.
One may want to allow photo-processing software to perform minor
touch-ups of the photos, such as changing the contrast, but not allow
more significant changes such as merging two photos or cropping a
photo. Boyle et al.argued that FS could be used in such a setting to
provide the photo processing software with a restricted key, which
enables it to sign only specific modifications of an original photo.
Let us assume there are three different pictures partitioned into three
areas and coloured in red, blue and yellow but in different order, as
represented in Figure 1.

The functionality of f1 is to exchange the colour of areas 2 and
3, while f2 is used to exchange the colour of areas 1 and 3, and f3
to exchange the colour of areas 1 and 2. Using the secret key skf1

to sign the photo φ1, we obtain the signed new photo y1. With the
restricted keys skf2

and skf3
, we can obtain two signed photos with

the same picture on it, namely y2 and y3. Using functional signa-
tures, given y1, y2 and y3, the appreciator (not the one who provides
the original picture) only knows they are three certified photos.

Generally, if we consider two functions f and g and two messages
m, m′ such that f(m) = g(m′) = y, then, given y and the corre-
sponding functional signature σ, FS cannot be used to certify that
the function value y is indeed computed from the queried function f
and m rather than from g and m′. The latter yields from the function
privacy property of FS [6], namely given y and σ, any adversary is

Fig. 1: An illustrated example of collisions from different messages
and functions in a functional signature scheme.

unable to tell which function f or g was used to compute the value
y even when given both functional signing keys skf and skg .

What if we wish to make the appreciator classify that a signed
photo y, is indeed the outcome of applying an “allowed” function
without revealing “which” one?

Our idea: to allow an appreciator/verifier to distinguish between
the usage of different secret keys, e.g. skf and skg , we introduce a
function public key, i.e. pkf and pkg , that is just used in the ver-
ification phase. The public key pkf can be seen as a commitment
for the specific and related secret key skf allowing to distinguish
between the evaluation and signatures (f(m), σ1) and (g(m′), σ2)
even in the case that f(m) = g(m′). This “key-addition” directly af-
fects the FS function privacy property that changes from “the verifier
cannot retrieve which function was computed” to the stronger con-
cept of “the verifier cannot retrieve which function was computed
despite knowing the related public key”. We capture this idea into the
enhanced definition of Strong Functional Signature (SFS), an Func-
tional Signature (FS)-like scheme with function public keys that
allows the verification of function evaluations’ signatures and guar-
antees the correct function evaluation while maintaining the function
hidden.

Example - Computational Authorisation for Cloud Computing:
our SFS primitive could be used in the example previously described,
as well as in more general applications related to the cloud-assisted

IET Research Journals, pp. 1–11
c© The Institution of Engineering and Technology 2015 1

setting which are alike to the certification authorities’ infrastructure
but for function application and not only for identity authentication.

As depicted in Fig. 2, let us consider a cloud service T that offers
to service providers Si the possibilities to register their functionali-
ties fi in exchange of guaranteeing function hiding and the correct
authentication whenever a user Uj wants to verify the authenticity
and correctness of the output of such hidden functionalities. In other
words, Si will register the function fi, obtain skfi from T and, at the
same time, T will publish the public key pkf1

with some application
label, e.g. it might be published into an “Authorised” functionality
list. Later on, the user Uj requires Si to process their data, obtains
the output y with signature σ and wants to verify that y is indeed
correctly computed by an authorised function. Therefore, Uj obtains
the list of authorised public keys pkfi and verifies that (y, σ) is valid
by finding a public key pkf that pass the SFS validation algorithm.
Additionally, Uj is unable to infer the precise function f from the
public key pkf thus the cloud service T guarantees to the service
provider S that the function is kept private.

Observe that the cloud service T has the power to modify the
status of the public keys, e.g. a public key pkg might be completely
“revoked” by removing it from all the public key’s lists.

Service
ProviderSi

Auth.
Unauth.

TCloud
Service

?

User Uj

pkf1

pkf2

pkf3

f?

pkfi

fi

skfi

Com
pu

te
&

Si
gn

Fig. 2: Strong functional signatures in the cloud computational
authentication scenario.

It is obvious that FS [1, 2, 6] does not have the features of check-
ing if the outcome is resulted from the authorised functions, neither
achieves this concept of “revocability”. In fact, in FS, since only
mvk is required to verify the validity of (y, σ), it is not possible
to check if a specific function was applied to output y, while our
SFS make it possible by providing restricted public keys w.r.t. each
function, which are employed in the verification process.

Moreover, in traditional FS schemes, it is indeed impossible to
“revoke” a specific signing key, since the verification process would
always work. However, in our introduced SFS notion, by incorporat-
ing the public keys in the verification process, we are able to revoke
the signing capability for a restricted signing key thus allowing the
trusted third party that owns the master key pair, to create a more
fine-grained control over the generated function key pairs.

Our Results: our results can be summarised as follows:

•we formally define the notion of SFS with unforgeability and
function hiding properties;
•we provide a variation of Boneh et al.’s BLS signature scheme [5]

and a variation of Fiore and Gennaro’s verifiable computation
scheme [8]. We prove that the Fiore and Gennaro’s VC scheme
satisfies the Public Verifiable Computation (PVC) privacy properties;
•based on our variations, we give an instantiation in the random oracle

model of an SFS scheme for the polynomial function family which
is adaptively unforgeable and satisfies the function hiding property.

The starting point of our instantiation of SFS is to use the BLS
signature scheme [5] in combination with the Fiore-Gennaro’s pub-
licly VC scheme [8] that is compatible with the algebraic structure
and assumptions of the BLS signatures. We denote with BLS the
variation of the BLS signature and with VC the variation of the
Fiore-Gennaro’s VC scheme, that we propose. The design-trick be-
hind our instantiation is to create a master key-pair as an algebraic
one-way instance and use it as a “transposition” for the secret
key of the schemes, e.g. BLS.Setup(λ)→ (MSK,MPK) is equal
to (β, e (g1, g2)β) for some β ∈ Zp and whenever we sample a
fresh secret value α ∈ Zp in order to compute the BLS and the VC
keys, we just consider the new secret α+ β obtained by translat-
ing α by β. Thus, all the evaluation/secret-keys are computed as
if α+β is the randomness sampled while the verification/public-
keys are published as “local keys”, e.g. we publish e (g1, g2)α and
not e (g1, g2)α+β . In this way, the two variated schemes become
“entangled” thus implying a stricter relation during execution and
verification. In a nutshell, the SFS instantiation combines the two
schemes such that the verifiable computation VC computes the se-
cret function and provide the proof of correct computation while the
signature scheme BLS is used to sign the result and forcedly relate
it to the VC results.

Related Work: SFS are inspired by Boyle et al. [6] FS construction
and are closely related to Signatures of Correct Computation (SCC)
proposed by Papamanthou, Shi and Tamassia [13] as well as PVC
proposed by Parno et al. [14] and Fiore and Gennaro [8].

Functional Signatures. This work is inspired by the notion of Func-
tional Signatures (FS) introduced by Boyle et al. [6]. They firstly
proposed the formal definition of FS with unforgeability security
as well as two additional desirable properties: function privacy and
succinctness. Boyle et al. defined FS and gave a construction for
an FS scheme, based on one-way functions and satisfying the un-
forgeability but not the succinctness or function privacy properties.
Furthermore, they showed how to convert any FS without the func-
tion privacy or succinctness properties into an FS scheme that is
succinct and function-private by using a SNARK scheme [3, 4, 11].
They also showed how to use an FS scheme to construct a delegation
scheme [10], i.e., non-interactive verifiable computation.

Signatures of Correct Computation. Papamanthou, Shi and
Tamassia introduced Signatures of Correct Computation (SCC)
for verifying the correctness of a computation outsourced in the
cloud [13]. In the SCC model, an authority wishes to outsource the
execution of a function f to an untrusted server. It generates a pair
of master keys along with a verification key FK(f) for that func-
tion which will be used during verification. Note that the existence
of such a verification key for a function f and the requirement of be-
ing used for verification are similar to our formulation of SFS. The
server can then return a signature σ on a value y, which certifies that
the result y is indeed the correct outcome of the function f evaluated
on some input. In the syntax of SCC [13], anyone with the public ver-
ification key can verify that an untrusted server correctly computed a
function f on a specific input m. However, the verification algorithm
requires the specific input m, used to compute f(m), to be taken as
input, which means that only the client or someone who knows the
input m can verify the correctness of the computation. Therefore,
SCC would not achieve any privacy with respect to the input m. In
contrast, our SFS allows anyone to perform the verification without
knowledge of the specific input m.

Publicly Verifiable Computation. Parno et al. [14] have proposed a
publicly verifiable computation (PVC) in which they consider a PVC
scheme achieving two desirable properties: public delegatability and
public verifiability. Their definition of PVC includes a ProbGen
algorithm, which encodes a user’s inputs m to a server’s inputs σm
and simultaneously prepares an element ρm to be used for verifica-
tion. Thus, ρm can be used to publicly verify that the server returned
a correct value. The public delegation property refers to the existence
of a public delegation key pkf for the function f , i.e., the key used

2

in the ProbGen algorithm, and publicly available to anyone. Thus,
anyone can use the key and delegate the computation to the cloud.

Parno et al. [14] also gave a construction of a VC scheme with
public delegation and public verifiability from any Attribute-Based
Encryption (ABE), which is unfortunately not appropriate to be em-
ployed in order to instantiate a SFS since additional transformations
are needed.

Another closely related work is the one by Fiore and Gennaro [8],
who presented a very efficient PVC scheme tailored for multivariate
polynomials over a finite field based on bilinear maps. We present
a variation of their VC scheme by introducing a separate Setup
algorithm to generate a master key pair for the scheme so that the
keys for the evaluation of different functions could be executed mul-
tiple times using the same parameters for the scheme, which allows
the evaluation of multiple functions on the same instance produced
by ProbGen.

Paper organisation. In Section 2, we describe the notations and re-
view the primitives used in the paper. In Section 3, we propose two
variances: one of Boneh et al.’s signature scheme, denoted BLS, and
one of the Fiore-Gennaro’s PVC scheme, denoted VC. In Section 4,
we provide the definition of SFS and its security properties and we
instantiate an unforgeable and function hiding SFS using the BLS
and the VC schemes.

2 Preliminaries

In the following section, we define the notations used through out
the paper. We also provide the assumptions and the definitions of the
building blocks that our constructions rely on.

2.1 Notations and Assumptions

In the paper, we denote with x←$X the random uniform sampling
in the set X , with λ the security parameter. We denote with ~v a vec-
tor and with Zp the ring with p elements. When not specified, p
always represents either a prime or a power of it. Let Pr(E) denote
the probability that the event E occurs. Let G1,G2,GT be groups
of the same order with generators g1, g2, gT correspondingly and
the bilinear map e : G1 ×G2 → GT of type-3, i.e. there does not
exists an efficient homomorphism map ψ : G2 → G1.

Definition 1 (co-Computation Diffie Hellman [5, 8]). Let
G1,G2,GT be groups of prime order p. Let g1 ∈ G1,g2 ∈ G2
be generators and e : G1 ×G2 → GT bilinear map of type-3, i.e.
there does not exists an efficient homomorphism map ψ : G2 → G1.
We sample uniformly at random a, b←$Zp and define the advantage
of an adversary A in solving the co-Computational Diffie Hellman
(co-CDH) problem as

Advco-CDH
A (λ) = Pr(A(p, g1, g2, g

a
1 , g

b
2) = gab1)

If for all adversaries A it exists a negligible ε such that
Advco-CDH
A (λ) ≤ ε, then the co-CDH Assumption ε-holds for the

groups G1,G2.

2.2 Closed Form Efficient PRFs

A closed form efficient PRF (Closed Form Efficient (CFE)-
PseudoRandom Function (PRF)), defined by Fiore and Gennaro [8]
consists of three algorithms CF.KeyGen, CF.H and CF.Eval.
CF.KeyGen takes as input a security parameter λ and outputs a se-
cret key K, from the key space K, and some public parameters pp
that specify the domain X and range Y of the function. For a fixed
secret key K, CF.HK takes as input a value x ∈ X and outputs a
value y ∈ Y . It satisfies the pseudo-randomness property: for ev-
ery PPT adversary A, (K, pp)← CF.KeyGen(λ) and any random

function ξ : X → Y:

εPRF =

∣∣∣∣∣∣ Pr
(
ACF.HK(·)(λ, pp) = 1

)
−

− Pr
(
Aξ(·)(λ, pp) = 1

) ∣∣∣∣∣∣ ≤ negl(λ)

Additionally, the scheme is required to achieve closed form effi-
ciency: consider a generic computation φ that has as input l random
values R1, . . . , Rl ∈ Y and a vector of m arbitrary values ~x =
(x1, . . . , xm). Assume that the fastest computation time that takes
to compute φ(R1, . . . , Rl, x1, . . . , xm) is T . Let ~z = (z1, . . . , zl)
be a l-tuple of arbitrary values in the domain X . The CF.PRF is said
to achieve closed form efficiency for (φ, ~z) if the algorithm CF.Eval
has running time o(T) and it holds

CF.Eval(φ,~z)(K,~x) = φ(CF.HK(z1), . . . ,CF.HK(zl), x1, . . . , xm)

Fiore and Gennaro [8] give constructions of closed form efficient
PRFs for multivariate polynomials and matrix multiplication, based
on the decision linear assumption.

2.3 Functional Signatures

Boyle et al. [6] introduced functional digital signatures (FS), a
cryptographic primitive that can be employed to achieve signing
delegation.

Definition 2 (Functional Signature [6]). A Functional Sig-
nature scheme for a message space M and function fam-
ily F = {f : Df →M} consists of the PPT algorithms FS =
(FS.Setup,FS.KeyGenFS.Sign,FS.Verify) defined as:

•FS.Setup(λ)→ (msk,mvk) : the setup algorithm takes as input
the security parameter λ and outputs the master signing key msk
and the master verification key mvk.
•FS.KeyGen(msk, f)→ skf : the key generation algorithm takes as

input the master signing key and a function f ∈ F and outputs a
signing key skf .
•FS.Sign(f, skf ,m)→ (f(m), σ) : the signing algorithm takes as

input the signing key for a function f and an input m ∈ Df , and
outputs f(m) and a signature σ of f(m).
•FS.Verify(mvk,m′, σ)→ {0, 1} : the verification algorithm takes

as input the master verification key mvk, a message m′ and a
signature σ, and outputs 1 if the signature is valid.

The definition requires the following conditions to hold:

Correctness: a Functional Signature (FS) scheme is correct if
for all functions f ∈ F , messages m ∈ Df , (msk,mvk) ob-
tained from FS.Setup(λ), skf obtained from FS.KeyGen(msk, f)

and (m′, σ) obtained from FS.Sign(f, skf ,m), it holds that
FS.Verify(mvk,m′, σ) = 1.

Succinctness: there exists a polynomial s(·) such that for ev-
ery λ ∈ N, function f ∈ F , message m ∈ Df , master keys
(msk,mvk)← FS.Setup(λ), function key skf obtained from
FS.KeyGen(msk, f), and (f(m), σ)← FS.Sign(skf ,m), it holds
with probability 1 that |σ| ≤ s(λ, |f(m)|).

Unforgeability: FS is unforgeable if the probability of any PPT
algorithm A in the FS unforgeability experiment ExpFS.UNF

FS (A),
depicted in Figure 3, to output 1 is negligible. Namely,

AdvFS.UNF
A,FS (λ) = Pr

(
ExpFS.UNF

FS (A) = 1
)
≤ negl(λ)

Function privacy: FS is function private if the advantage of
any PPT algorithm A in the FS function privacy experiment

3

ExpFS.UNF
FS (A)

(msk,mvk)← FS.Setup(λ)

LF ,L∆ = ∅

(m?
, σ

?
)← AOFS.key,OFS.sign (mvk)

if
(
∃(f, i, ·) ∈ LF : ∃m′ : m?

= f(m′)
)

∨
(
∃(f, i,m, ·) ∈ L∆ : m?

= f(m)
)

return⊥

else

return FS.Verify(mvk,m?
, σ

?
)

ExpFS.FPriv
FS (A)

(msk,mvk)← FS.Setup(λ)

b←$ {0, 1}

(f0,m0, f1,m1)← A(msk,mvk)

if
(
|f0| 6= |f1| ∨ |m0| 6= |m1| ∨

∨ f0(m0) 6= f1(m1)
)

return⊥

else skfb ← FS.KeyGen(msk, fb)

(m?, σ?)← FS.Sign(fb, skfb ,mb)

b
? ← A(msk,mvk,m?, σ?)

if b
?

= b then return 1

else return 0

OFS.key(f ,i)

if (f, i, ·) in LF then

return sk
i
f

else sk
i
f ← FS.KeyGen(msk, f)

LF ← LF ∪ {(f, i, sk
i
f)}

return sk
i
f

OFS.sign(f ,i,m)

sk
i
f ← OFS.key(f, i)

σ ← FS.Sign(f, sk
i
f ,m)

L∆ ← L∆ ∪ {(f, i,m, σ)}

return σ

Fig. 3: Functional signature unforgeability and function privacy experiments.

ExpFS.FPriv
FS (A), depicted in Figure 3 is negligible. Namely,

AdvFS.FPriv
A,FS (λ) =

∣∣∣∣Pr(ExpFS.FPriv
FS (A) = 1

)
− 1

2

∣∣∣∣ ≤ negl(λ)

2.4 The BLS Signature Scheme

In this section, we will report the Boneh et al.’s signature scheme [5].
Let (p, g1, g2,G1,G2,GT , e) where e : G1 ×G2 → GT is a bi-
linear map in the security parameter λ. Let H : {0, 1}∗ → G1 be
a full-domain hash function. The BLS signature scheme [5] with
the message space M = {0, 1}∗ comprises of the following three
algorithms:

•BLS.KeyGen(λ)→ (PK, SK): given a security parameter λ, sam-
ple a secret value SK←$Zp and compute as the public key PK =
gSK2 .
•BLS.Sign(SK,m)→ σ̈: given a secret key SK and a message m ∈
M, compute H(m) and output the signature σ̈ = H(m)SK.
•BLS.Verify(PK,m, σ̈)→ {0, 1}: given a public key PK, a message
m and a signature σ̈, check e (σ̈, g2)

?
= e (H(m),PK) and output 1

if it is true, otherwise output 0.

The BLS scheme is existentially unforgeable against chosen mes-
sage attacks in the random oracle model (ROM), assuming the
co-CDH assumption of Definition 1 holds.

2.5 Verifiable Computation

A verifiable computation (VC) scheme allows a client to delegate the
computation of a function f to a server so that the client is able to
verify the correctness of the result returned by the server with less
computation cost than evaluating the function directly. We describe
the definition of a verifiable computation (VC) scheme introduced
by Parno et al. [14] and Fiore and Gennaro [8].

Definition 3 (Verifiable Computation [8, 14]). A verifiable compu-
tation scheme VC is defined by the following algorithms:

•VC.KeyGen(λ, f)→ (s̃kf , ṽkf , ẽkf) : the key generation algorithm
takes as input a security parameter λ and the description of a func-
tion f , and outputs a secret key s̃kf that will be used for input
delegation, a corresponding verification key ṽkf , and an evaluation
key ẽkf , which will be used for the evaluation of f .

•VC.ProbGen(s̃kf ,m)→ (σ̃m, ρ̃m) : the problem generation algorithm
uses the secret key s̃kf to encode the function input m as an encoded
value σ̃m and a corresponding decoding value ρ̃m.
•VC.Compute(ẽkf , σ̃m)→ σ̃y : the computing algorithm takes as

input the evaluation key ẽkf and the encoded input σ̃m and outputs
σ̃y , an encoded version of the function’s output y = f(m).
•VC.Verify(ṽkf , ρ̃m, σ̃y)→ y or⊥ : the verification algorithm takes

as input the verification key ṽkf , the decoding value ρ̃m and the
encoded output σ̃y . The algorithm outputs y if and only if y = f(m)
is correctly computed. Otherwise ⊥ is the output.

A publicly verifiable computation scheme is a VC scheme with
an additional property that the verification key ṽkf is published pub-
licly such that anyone can check the correctness of a performed
computation.

Remark 1. The original VC [8] is with “secret-key” nature. In the
earlier definition, KeyGen produces a secret key that was used as an
input to ProbGen and, in turn, ProbGen produces a secret verifica-
tion value needed for Verify. Later, Parno et al. [14] introduced the
“public-key” VC definition which has both the public delegation and
public verification properties. The delegation being public or pri-
vate depends on whether the evaluation key s̃k is published or kept
secret. In our case, we consider the scenario where the Public Verifi-
able Computation (PVC) scheme is publicly verifiable but privately
delegatable, i.e. the evaluation key ẽkf is secret while the verifica-
tion key ṽkf is public. In the paper, we abuse terminology and refer
to a PVC scheme when discussing about a Verifiable Computation
(VC) scheme.

Correctness: a verifiable computation scheme VC is correct
for a class of functions F if for any f ∈ F , for any tu-
ple of keys (s̃kf , ṽkf , ẽkf)← VC.KeyGen(λ, f), for any m ∈
Df , for any (σ̃m, ρ̃m)← VC.ProbGen(s̃kf ,m) and any com-
puted σ̃y obtained from VC.Compute(ẽkf , σ̃m), it holds that
VC.Verify

(
ṽkf , ρ̃m, σ̃y

)
= y = f(m).

Security: a VC scheme is secure w.r.t. a static attacker if the prob-
ability of any PPT algorithm A in the VC static security experiment
ExpVC.StaticVerify

VC (A) of Figure 4, to output 1 is negligible. Namely,

Adv
VC.StaticVerify
A,VC (λ) = Pr

(
ExpVC.StaticVerify

VC (A) = 1
)
≤ negl(λ)

4

Privacy [9]: a VC scheme is said to be private w.r.t. a static attacker
if the advantage of any PPT algorithm A winning in the VC privacy
experiment ExpVC.Priv

VC (A) of Figure 4 is negligible. Namely,

AdvVC.Priv
A,VC (λ) =

∣∣∣∣Pr(ExpVC.Priv
VC (A) = 1

)
− 1

2

∣∣∣∣ ≤ negl(λ)

ExpVC.StaticVerify
VC (A)

f ← A
(
1
n)

(s̃kf , ṽkf , ẽkf)← VC.KeyGen (λ, f)

(σ̃0, ρ̃0) = (∅, ∅)

for i ∈ {1, . . . , t = poly(λ)} do

mi ← A
(

ẽkf , ρ̃1, . . . , ρ̃i−1

ṽkf , σ̃1, . . . , σ̃i−1

)

(σ̃i, ρ̃i)← VC.ProbGen(s̃kf ,mi)

m? ← A
(

ẽkf , ρ̃1, . . . , ρ̃t
ṽkf , σ̃1, . . . , σ̃t

)

(σ̃, ρ̃)← VC.ProbGen(s̃kf ,m
?
)

σ̃
? ← A

(
ẽkf , ρ̃1, . . . , ρ̃t, ρ̃

ṽkf , σ̃1, . . . , σ̃t, σ̃

)

y
? ← VC.Verify(ṽkf , ρ̃, σ̃

?
)

if
(
y
? 6= ⊥

)
∧
(
y
? 6= f(m?

)
)

then return 1

else return 0

ExpVC.Priv
VC (A)

(f0, f1,m0,m1)← A
(
1
n)

if f0(m0) 6= f1(m1) then

return⊥

b←$ {0, 1}

(s̃kfb , ṽkfb , ẽkfb)← VC.KeyGen (λ, fb)

(σ̃b, ρ̃b)← VC.ProbGen(s̃kfb ,mb)

σ̃yb
← VC.Compute(ẽkfb , σ̃b)

b
? ← A(ṽkfb , σ̃yb

, ρ̃b, f0, f1,m0,m1)

if b
?

= b then return 1

else return 0

Fig. 4: VC static security and privacy experiments.

2.6 Fiore-Gennaro’s PVC Scheme

Fiore and Gennaro [8] propose a publicly VC scheme for
the function family F containing all multivariate polynomials
f(x1, . . . , xm) with coefficients in Zp for some prime p, m vari-
ables and degree at most d in each variable. Let h : Zmp → Zlp
which expands the input ~x to the vector (h1(~x), . . . , hl(~x)) of all
the monomials as follows: for all j ∈ {1, . . . , l} where l = (d+
1)m, write j = (i1, . . . , im) with ik ∈ {0, . . . , d}, then hj(~x) =

(xi11 · · ·x
im
m). Thus, by using this notation, it is possible to write

the polynomial as f(~x) = 〈~f, h(~x)〉 =
∑l
j=1 fj · hj(~x) where the

fj ’s are its coefficients and fj ∈ Zp. The construction works over
the groups G1,G2,GT of the same prime order p, equipped with

a bilinear map e : G1 ×G2 → GT . Let us define Poly(~R, ~x) =∏l
j=1R

hj(~x)
j where ~R is a random l-dimensional vector of Gl1.

Let CF = (CF.KeyGen,CF.H,CF.Eval) be a CFE PRF de-
fined in Section 2.2. Fiore-Gennaro’s public verifiable computation
scheme [8] VC is constructed as the follows:

•VC.KeyGen(λ, f)→ (s̃kf , ṽkf , ẽkf) : Generate the description of
a bilinear group (p, g1, g2,G1,G2,GT , e) in the security param-
eter λ, a key of a PRF K ← CF.KeyGen(λ, dlog de ,m) with
range in G1. Randomly sample α←$Zp and, for all the indexes
i ∈ {1, . . . , l}, compute Wi = gα·fi1 CF.HK(i) and define W as
(W1, . . . ,Wl) ∈ Gl1. Output the key tuple

(
s̃kf , ṽkf , ẽkf

)
as the

values
(
K, e (g1, g2)α , (f,W)

)
.

•VC.ProbGen(s̃kf , ~m)→ (σ̃m, ρ̃m) : Output the tuple
(
σ̃m, ρ̃m

)
where σ̃m = ~m and ρ̃m = e

(
CF.EvalPoly(K,h(~m)), g2

)
.

•VC.Compute(ẽkf , σ̃m)→ σ̃y : Compute y by evaluating f(~m) =∑l
i=1 fihi(~m) and V =

∏l
i=1W

hi(~m)
i . Output σ̃y = (y, V).

•VC.Verify(ṽkf , ρ̃m, σ̃y)→ {y,⊥} : output y if it holds that

e (V, g2)
?
=
(
ṽkf
)y · ρ̃m. Otherwise output ⊥.

Fiore and Gennaro [8] proved that the construction is secure if the
co-CDH assumption holds and CF.PRF is a close form efficient PRF.
In Lemma 1, we prove that Fiore-Gennaro PVC scheme satisfies
privacy as defined in the experiment depicted in Figure 4.

3 Construction Blocks: Variated Schemes

In this section, we provide our variations of the Boneh-Lynn-
Shacham signature scheme [5] and Fiore-Gennaro publicly verifi-
able computation scheme [8].

In a nutshell, the variations add to the schemes a “setup
algorithm” that outputs a master key-pair used in the original key-
generation algorithm and in the final verification algorithm while
the accordingly modified security games reduce to the ones of the
original schemes. The final purpose of these modifications is to later
allowing the instantiation of both the two schemes with a single com-
mon master key-pair in a stronger security setting, where the master
secret-key is kept secure as in the act of “merging” the schemes into
a single one. Intuitively, with the shared schemes’ master public-key,
the final verification algorithm will compute the two schemes’ ver-
ification algorithms independently and will verify that the schemes
are indeed “merged” into a single one.

3.1 A variation of the BLS signature

We introduce, in the BLS signature scheme, a Setup algorithm
that outputs a master key-pair (MPK,MSK) used in the KeyGen
algorithm to produce a local signing key in order to generate a signa-
ture for a message together with a local verification key. The Verify
algorithm will take both the master public key and the local veri-
fication key to check the validity of a message-signature pair. We
provide the unforgeability game for our BLS variation in Figure 5
and prove the unforgeability of it in the random oracle model.

Definition 4 (BLS Variation). Let (p, g1, g2,G1,G2,GT , e) where
e : G1 ×G2 → GT is a bilinear map in the security parameter λ.
Let H : {0, 1}∗ → G1 be a full-domain hash function and F : K ×
{0, 1}∗ → Zp a PRF. Let the additional information α ∈ Zp be a
field element known just to the signer. Our variation BLS scheme is
defined as the algorithms:

•BLS.Setup(λ)→ (MPK,MSK): sample β←$Zp, set MSK = β.
Compute MPK=e (g1, g2)β and output (MPK,MSK) ∈ GT×Zp.
•BLS.KeyGen(MSK, α)→ (PK, SK): given MSK ∈ Zp and α ∈
Zp, sample k←$Zp, r ∈ Zp and compute secret key as SK =
(SK1, SK2) = (gMSK+α+r

1 , k
)

and the public key as PK =

(PK1,PK2) = (e (g1, g2)α+r , gSK2
2).

5

•BLS.Sign(SK,m)→ σ̈: given a secret key SK = (SK1, SK2) and
a message m ∈M, compute and output the signature σ̈ = SK1 ·
H(m)SK2 .
•BLS.Verify(MPK,PK,m, σ̈)→ {0, 1}: given a public key PK =
(PK1,PK2), a message m, a signature σ̈ and a environmental pub-
lic key MPK, verify and output the result of the check e (σ̈, g2)

?
=

MPK · PK1 · e (H(m),PK2).

ExpBLS.UNF
BLS (A)

(PK, SK)← BLS.KeyGen(λ)

(m?
, σ̈

?
)← AOBLS.Sign(SK,·),OH(·)

(PK)

if (m?
, σ̈

?
) ∈ L∆ then return⊥

return BLS.Verify(PK,m?
, σ̈

?
)

ExpBLS.UNF
BLS

(A)

(MPK,MSK)← BLS.Setup(λ)

α
? ← A(MPK); L∆ = ∅

(PK, SK)← BLS.KeyGen(λ,MSK, α?
)

(m?
, σ̈

?
)← A

O
BLS.Sign

(SK,·),OH(·)
(MPK,PK)

if (m?
, σ̈

?
) ∈ L∆ then return⊥

return BLS.Verify(MPK,PK,m?
, σ̈

?
)

Fig. 5: BLS and BLS unforgeability experiments.

We present in Figure 5 a modified unforgeability experiment for
the BLS scheme which, differently from the BLS standard unforge-
ability experiment, must consider the generation of the master key
pair and the value α?. We prove that, despite the modification,
unforgeability is preserved.

Proposition 1. If the advantage for all PPT adversaries B for
the experiment ExpBLS.UNF

BLS (B) is negligible, then all the PPT ad-

versaries A for the experiment ExpBLS.UNF
BLS

(A) have a negligible
advantage. Formally:

AdvBLS.UNF
A,BLS (λ) ≤ AdvBLS.UNF

B,BLS (λ) ≤ negl(λ)

Proof: let us assume that there exists a PPT adversary A for the
experiment ExpBLS.UNF

BLS
(A) with non-negligible advantage ∆. The

oracles OBLS.Sign(SK)(m) and OBLS.Sign(SK)(m) is to respond with
the signatures on the messages m submitted to each challenger and
then keep a track of the message-signature pair in its queried set
L∆. Now we construct an adversary R, running A as a subrou-
tine, which attacks the underlying BLS scheme. Receiving from
BLS challenger the public key PK?, R sets it to be PK2. R runs
BLS.Setup(λ)→ (MPK,MSK). It then outputs MPK to A. A
will reply with ξ and α. R fixes SK1 = gMSK+α+r

1 and com-
putes PK1 = e

(
gMSK+α+r
1 , g2

)
and outputs PK = (PK1,PK2)

to A. After the key generation phase, for every signing query
OBLS.Sign(m) from A, the reduction R queries B’s oracle with
OBLS.Sign(m) and obtains σ̈?. For any hash query OH(m) from A,
R queries B’s hash oracle with OH(m) and obtains H(m). R com-
putes σ̈ = SK1 · σ̈? and returns it toA. WhenA outputs the forgery
(m?, σ̈?), the reductionR outputs (m?, σ̈? · g−α−MSK−r

1).
It is direct to check thatR output is a correct forgery for the BLS

signature scheme since:

BLS.Verify(PK?,m?, σ̈? · g−α−MSK−r
1)⇔

e
(
σ̈? · g−α−MSK−r

1 , g2

)
?
= e

(
H(m?),PK?

)
⇔

⇔ e
(
σ̈?, g1

) ?
= e (g1, g2)α+MSK+r · e

(
H(m?),PK?

)
⇔ e

(
σ̈?, g1

) ?
= MPK · PK1 · e

(
H(m?),PK2

)
⇔ BLS.Verify(MPK,PK,m?, σ̈?)

therefore ∆ = AdvBLS.UNF
A,BLS

(λ) ≤ AdvBLS.UNF
B,BLS (λ) which is a con-

tradiction. �

3.2 A variation of Fiore-Gennaro’s PVC

In our PVC variation, we introduce a master key-pair (m̃sk, m̃pk)

that is generated in the Setup phase and set as (β, e (g1, g2)β),
which adds additional randomness to the evaluation key of func-
tion f such that Wi in Fiore-Gennaro’s PVC is rerandomized to
Wi · gβ·fi1 . By forcing the master secret-key to be zero, i.e. β = 0,
we obtain the original Fiore-Gennaro’s scheme.

Definition 5 (Fiore-Gennaro PVC Variation). Let pp be the descrip-
tion of a bilinear group (p, g1, g2,G1,G2,GT , e) in the security
parameter λ. Our publicly verifiable computation scheme VC is
defined by the following algorithms:

•VC.Setup(λ)→ (m̃sk, m̃pk) : the setup algorithm randomly sam-
ple β←$Zp and outputs

(
m̃sk, m̃pk

)
=
(
β, e (g1, g2)β

)
.

•VC.KeyGen(λ, m̃sk, f)→ (s̃kf , ṽkf , ẽkf) : let m̃sk = β. The
algorithm samples α←$Zp and generates a PRF key K ←
CF.KeyGen(λ, dlog de ,m) with range in G1. For all i ∈
{1, . . . , l}, it computes Wi = g

(α+β)·fi
1 CF.HK(i) and let W be

defined as (W1, . . . ,Wl) ∈ Gl1. It outputs
(
s̃kf , ṽkf , ẽkf

)
as(

(α, gα2 ,K), e (g1, g2)α , (f,W)
)
.

•VC.ProbGen(s̃kf , ~m)→ (σ̃m, ρ̃m) : Output the tuple
(
σ̃m, ρ̃m

)
where σ̃m = ~m and ρ̃m = e

(
CF.EvalPoly(K,h(~m)), gα2

)
.

•VC.Compute(ẽkf , σ̃m)→ σ̃y : Compute y by evaluating f(~m) =∑l
i=1 fihi(~m) and V =

∏l
i=1W

hi(~m)
i . Output σ̃y = (y, V).

•VC.Verify(m̃pk, ṽkf , ρ̃m, σ̃y)→ {y,⊥}: the algorithm checks if it

holds that e (V, g2)
?
=
(
ṽkf · m̃pk

)y · ρ̃m. If it is true, then it outputs
y. Otherwise it outputs ⊥.

Remark 2. It seems redundant to include α in s̃kf , since the com-
ponent of (gα2 ,K) suffices to obtain (σ̃m, ρ̃m). However, looking
ahead, the component α of s̃kf plays the role of building a bridge
between VCand BLSin order to achieve an SFS.

We describe the security and privacy experiments in Fig. 6.

Proposition 2. If all PPT adversaries B for the experiment
ExpVC.StaticVerify

VC (B) have a negligible advantage, then all the PPT

adversaries A for the experiment ExpVC.StaticVerify
VC

(A) have a
negligible advantage. Formally:

Adv
VC.StaticVerify
A,VC

(λ) ≤ Adv
VC.StaticVerify
B,VC (λ) ≤ negl(λ)

and, mutatis mutandis, it holds:

AdvVC.Priv
A,VC (λ) ≤ AdvVC.Priv

B,VC (λ)

Proof: let us assume by contradiction that there exists a PPT adver-
saryA for the experiment ExpVC.StaticVerify

VC
(A) with non-negligible

advantage ∆. We build an adversary R, running A as a subroutine,
which attacks the security of the underlying VC scheme. R runs
VC.Setup(λ)→ (m̃pk, m̃sk) and then outputs m̃pk to A that will

6

ExpVC.StaticVerify
VC

(A)

(m̃pk, m̃sk)← VC.Setup(λ)

f ← A
(

m̃pk

)

(s̃kf , ṽkf , ẽkf)← VC.KeyGen

(
λ, f

m̃sk

)

for i ∈ {1, . . . , t = poly(λ)} do

mi ← A
(

ẽkf , ρ̃1, . . . , ρ̃i−1

ṽkf , σ̃1, . . . , σ̃i−1
, m̃pk

)

(σ̃i, ρ̃i)← VC.ProbGen(s̃kf ,mi)

m? ← A
(

ẽkf , ρ̃1, . . . , ρ̃t
ṽkf , σ̃1, . . . , σ̃t

, m̃pk

)

(σ̃, ρ̃)← VC.ProbGen(s̃kf ,m
?
)

σ̃
? ← A

(
ẽkf , ρ̃1, . . . , ρ̃t, ρ̃

ṽkf , σ̃1, . . . , σ̃t, σ̃
, m̃pk

)

y
? ← VC.Verify(ṽkf , ρ̃, σ̃

?
)

if
(
y
? 6= ⊥

)
∧
(
y
? 6= f(m?

)
)

then return 1

else return 0

ExpVC.Priv
VC (A)

(m̃pk, m̃sk)← VC.Setup(λ)

b←$ {0, 1}

(f0, f1,m0,m1)← A
(

m̃pk

)
if f0(m0) 6= f1(m1) then

return⊥

(s̃kfb , ṽkfb , ẽkfb)← VC.KeyGen

(
λ, fb

m̃sk

)

(σ̃b, ρ̃b)← VC.ProbGen(s̃kfb ,mb)

σ̃yb
← VC.Compute(ẽkfb , σ̃b)

b
? ← A(m̃pk , ṽkfb , σ̃yb

, ρ̃b, f0, f1,m0,m1)

if b
?

= b then return 1

else return 0

Fig. 6: The static security and privacy experiments for VC scheme.
In box are high-lighted the variations introduced in the VC exper-
iments in comparison to the original Fiore-Gennaro VC scheme.

reply with the challenging function f . The reduction R just for-
wards it to the challenger of VC scheme and obtains (ṽkf , ẽkf)

where ẽkf = (f,W?). R modifies W? into W by computing, for

all i ∈ {1, . . . , l}, the new values Wi = Wi? · g
m̃sk·fi
1 . It then re-

turns (ṽkf , (f,W)) to A. All the ProbGen queries from A are just
forwarded to the challenged of VC scheme and are responded with
the same response from VC challenger. When the adversary A out-
puts the forgery (i?, σ̃?) where σ̃? = (y?, V ?), the reductionR and

outputs (i?, (y?, V ? · g−m̃sk·y
1)). It is straightforward to check that

R output is a correct tamper for the VC scheme since:

VC.Verify
(
ṽkf , ρ̃i? ,

(
y?,V ? · g−m̃sk·y

1

))
⇔

e

(
V ? · g−m̃sk·y

1 , g2

)
?
= ṽk

y
f · ρ̃i? ⇔

e
(
V ?, g2

)
e (g1, g2)−m̃sk·y ?

= ṽk
y
f · ρ̃i? ⇔

⇔ e
(
V ?, g2

) ?
= e (g1, g2)m̃sk·y · ṽk

y
f · ρ̃i?

⇔ e
(
V ?, g2

) ?
=
(

m̃pk · ṽkf
)y
· ρ̃i?

⇔ VC.Verify(m̃pk, ṽkf , ρ̃
?
i , σ̃

?)

therefore ∆ = Adv
VC.StaticVerify
A,VC

(λ) ≤ Adv
VC.StaticVerify
R,VC (λ) ≤ negl

which is a contradiction. Similarly, it is easy to define a reduction
R for an adversary A for the VC privacy experiments such that
AdvVC.Priv
A,VC

(λ) ≤ AdvVC.Priv
R,VC (λ). �

We complement Fiore-Gennaro’s results by providing the proof
that their original VC scheme is indeed private, since this is needed
to prove the function hiding property of the SFS construction.

Lemma 1. If CF.PRF is a close form efficient PRF, then the Fiore-
Gennaro PVC scheme is private.

Proof: in order to prove the privacy of the Fiore-Gennaro scheme,
we define a sequence of games that has the random bit b as input.

•Game1(b, A): the experiment ExpVC.Priv
VC (A) is executed by using

the original Fiore-Gennaro scheme;
•Game2(b, A): in this game, the ρ̃mb value is computed as ρ̃mb =

e
(∏l

i=1 CF.HK(i)hi(~mb), g2

)
;

•Game3(b, A): we exchange all the PRF evaluations CF.HK(i) with
random elements Ri;
•Game4(b, A): we split the definition of W into a left and a right

component W = {(WLi
,WRi

)}li=1 = {(gαfbi1 , Ri)}li=1 and we
substitute Wi with WLi

·WRi
;

•Game5(b, A): after the challenge, we compute y which is equal to
f0(m0) = f1(m1), define WL = gα·y1 and then substitute W with
just the right component W = {WRi

}li=1. The game computes V
as WL ·

∏l
i=1Ri

hi(mb)

We highlight the difference between the games in Figure 7 in
which we describe the challenger computations made after the chal-
lenger bit b sampling and before the bit b′ guess. For compactness,
we refer to CF.HK with just HK and the notation {·}i where the
index i is contained in the set {1, . . . , l}.

Claim 1. Pr
(
Game1(b,A) = 1

)
= Pr

(
Game2(b,A) = 1

)
Proof: The only difference is on “how to evaluate” the CF.EvalPoly
and by its correctness, the two are equivalent. �

Claim 2.
∣∣Pr(Game2(b,A) = 1

)
− Pr

(
Game3(b,A) = 1

)∣∣ ≤ εPRF
Proof: The difference between the games is that we replace the
evaluation of the PRF with random elements. It is easy to see that
an adversary A able to distinguish between the two games with
non-negligible advantage can be used to define an adversary B
able to distinguish the security of the CF.PRF with non-negligible
advantage. �

Claim 3. Pr
(
Game3(b,A) = 1

)
= Pr

(
Game4(b,A) = 1

)
Proof: The two games are equivalent since there is no difference
between the two distributions. �

Claim 4. Pr
(
Game4(b,A) = 1

)
= Pr

(
Game5(b,A) = 1

)

7

Game1(b)

1 :
(
K, e (g1, g2)α ,

(
fb,
{
g
α·fbi
1 HK(i)

}
i

))
2 :

(
~mb, e

(
CF.EvalPoly(K,h(~mb)), g2

))
3 :

(
y,

l∏
i=1

W
hi(~mb)
i

)

Game2(b)

1 :
(
K, e (g1, g2)α ,

(
fb,
{
g
α·fbi
1 HK(i)

}
i

))
2 :

(
~mb, e

(∏l
i=1 HK(i)hi(~mb) , g2

))
3 :

(
y,

l∏
i=1

W
hi(~mb)
i

)

Game3(b)

1 :
(
e (g1, g2)α ,

(
fb,
{
g
α·fbi
1 Ri

}
i

))
2 :

(
~mb, e

(
l∏
i=1

Ri
hi(~mb), g2

))

3 :

(
y,

l∏
i=1

W
hi(~mb)
i

)

Game4(b)

1 :
(
e (g1, g2)α , (fb,

{(
g
α·fbi
1 Ri

)}
i

)
)

2 :

(
~mb, e

(
l∏
i=1

Ri
hi(~mb), g2

))

3 :

(
y,

l∏
i=1

((
g
α·fbi
1

)
·Ri

)hi(~mb)

)

Game5(b = 1)

1 : y = f1(m1)

2 :
(
e (g1, g2)α , (fb,

{(
g
α·fbi
1 Ri

)}
i

)
)

3 :

(
~m1, e

(
l∏
i=1

Ri
hi(~m1), g2

))

4 :
(
y, gα·y1 ·

∏l
i=1Ri

hi(~m1)
)

Game5(b = 0)

1 : y = f0(m0)

2 :
(
e (g1, g2)α , (fb,

{(
g
α·fbi
1 R′i

)}
i

)
)

3 :
(
~m0, e

(∏l
i=1R

′
i
hi(~m0)

, g2

))
4 :

(
y, gα·y1 ·

∏l
i=1R

′
i
hi(~m0)

)
Fig. 7: The games used for proving the privacy of Fiore-Gennaro
PVC scheme.

Proof: The difference between the two games is merely a com-
putational optimisation since

∏l
i=1

(
g
α·fbi
1

)hi(mbi
)

= gα·y1 where
y = f0(m0) = f1(m1). Thus, there is no difference between the
two games distributions. �

Claim 5. Pr
(
Game5(1,A) = 1

)
= Pr

(
Game5(0,A) = 1

)
Proof: in order to prove the equality between the two probabili-
ties, it is important to observe that, since the exponents hi(~mb)
and hi(~m1−b) are fixed, the probability is measured on the random
values Ri and R′i. Fixed Ri, dually R′i, there exists random val-
ues R′i, dually Ri, such that the product

∏l
i=1Ri

hi(~mb) is equal

to
∏l
i=1R

′
i
hi(~m1−b). Thus, by duality, the probabilities are the

same. �

Therefore, the advantage is

Adv
VC.StaticVerify
A,VC (λ) =

=
∣∣Pr(Game1(1,A) = 1

)
− Pr

(
Game1(0,A) = 1

)∣∣
≤ 2 ·

4∑
i=1

∣∣Pr(Gamei(1,A) = 1
)
− Pr

(
Gamei+1(1,A) = 1

)∣∣+
+
∣∣Pr(Game5(1,A) = 1

)
− Pr

(
Game5(0,A) = 1

)∣∣
≤ 2 · εPRF

�

4 Strong Functional Signatures

In this section, we define the Strong Functional Signature (SFS)
primitive and the related unforgeability and function hiding exper-
iments. We provide a specific SFS instantiation using the variated
schemes introduced in Section 3 and prove it achieves unforgeability
and function hiding.

4.1 SFS Definition

Our definition of an SFS scheme can be seen as a combination of
a PVC and a FS scheme: similar to FS, an SFS scheme achieves
delegation of the signing capability w.r.t. the master key-pair and it
also allows the verification of the correct computation of the signing
function f through an additional function public key pkf , as a PVC
scheme.

Definition 6 (Strong Functional Signature). A Strong Func-
tional Signature (SFS) scheme for a message space M and
function family F consists of the PPT algorithms SFS =
(SFS.Setup,SFS.KeyGen,SFS.Sign,SFS.Verify) defined as:

•SFS.Setup(λ)→ (msk,mvk) : the setup algorithm takes as input
the security parameter λ and outputs the master signing key and the
master verification key.
•SFS.KeyGen(msk, f)→ (pkf , skf) : the key generation algorithm

takes as input the master signing key and a function f ∈ F and out-
puts a secret signing key skf and a public verification key pkf w.r.t.
the function f .
•SFS.Sign(skf ,m)→ (y, σ) : the signing algorithm takes as input

the secret signing key for a function f ∈ F and a message in the
function domain m ∈ Df , and outputs a value y = f(m) and a
signature of f(m).
•SFS.Verify(mvk, pkf , y

′, σ)→ {0, 1} : the verification algorithm
takes as input the master verification key mvk, the public verification
key pkf for the function f , a message y′ and a signature σ, and
outputs 1 if the signature is valid and a correct computation of f , 0
if it is not a correct computation of f or the signature is not valid.

We require the following conditions to hold:

8

ExpSFS.UNF
SFS. (A)

(msk,mvk)← SFS.Setup(λ); LF ,L∆ := ∅

(pk?,m?
, σ

?
)← AOSFS.key,OSFS.sign (mvk)

if
(

(·, ·, (·, pk?), ·) /∈ LF ∨ (f, i, (skif , pk
?
), 1) ∈ LF)∨(

(·, ·, pk?),m?
, ·
)
∈ L∆ ∨

(
(·, ·, ·),m?

, σ
?
) ∈ L∆

)
then return⊥

else return SFS.Verify(mvk, pk?,m?
, σ

?
)

OSFS.sign(f, i,m)

if (f, i, ·, ·) /∈ LF then OSFS.key(f, i, 0)

// Extract (f, i) from LF

(f, i, (skif , pk
i
f), ·) ∈ LF

(f(m), σ)← SFS.Sign(skif ,m)

L∆ ← L∆ ∪ {((f, i, pkif), f(m), σ)}

return (f(m), σ, pkif)

ExpSFS.FHid
SFS. (A)

(msk,mvk)← SFS.Setup(λ)

b←$ {0, 1}

(f0,m0, f1,m1)← A(mvk)

if
(
|f0| 6= |f1| ∨ |m0| 6= |m1| ∨

∨ f0(m0) 6= f1(m1)
)

return⊥

else

(pkfb
, skfb)← SFS.KeyGen(msk, fb)

(y, σb)← SFS.Sign(skfb ,mb)

b
? ← A(mvk, pkfb

, y, σb, f0, f1,m0,m1)

return b
?
= b

?

OSFS.key(f, i, v)

if (f, i, ·, ·) /∈ LF then

(pkif , sk
i
f)← SFS.KeyGen(msk, f)

LF ← LF ∪ {(f, i, (skif , pk
i
f), v)}

if v = 1 then return (pkif , sk
i
f)

else return pkif

if (f, i, (skif , pk
i
f), v̂) ∈ LF then

if v̂ = 1 then return (pkif , sk
i
f)

else return pkif

Fig. 8: SFS unforgeability and function hiding experiments.

Correctness: for any function f ∈ F , for any message m ∈
Df , master keys (msk,mvk)← SFS.Setup(λ), function keys
(pkf , skf)← SFS.KeyGen(msk, f), and (y, σ) obtained from
SFS.Sign(skf ,m), it holds that SFS.Verify(mvk, pkf , y, σ) = 1.

Succinctness: there exists a polynomial s(·) such that for ev-
ery λ ∈ N, function f ∈ F , message m ∈ Df , master keys
(msk,mvk)← SFS.Setup(λ), function keys (pkf , skf) obtained
from SFS.KeyGen(msk, f), and (f(m), σ)← SFS.Sign(skf ,m),
it holds with probability 1 that |σ| ≤ s(λ, |f(m)|).

Unforgeability: an SFS scheme is said to be unforgeable if the
probability of any PPT algorithmA in the SFS unforgeability exper-
iment ExpSFS.UNF

SFS (A) depicted in Fig. 8 to output 1 is negligible.
Namely,

AdvSFS.UNF
A,SFS (λ) = Pr

(
ExpSFS.UNF

SFS (A) = 1
)
≤ negl(λ)

The main idea behind the unforgeability game is that an adver-
saryAmust present a tamper (pk?,m?, σ?) for an existing honestly
generated public key, whose corresponding secret key is not revealed
to A. We allow the adversary to arbitrarily request correct signa-
tures and new key pairs that can be corrupted depending on the
value of v, i.e. if A can obtain a corrupted key pair by querying
OSFS.key(f, i, 1) where v = 1. We deliberately do not allow A to
corrupt already generated key since this would imply that the third
party that generates the function keys is able to identify whenever
a specific public key is compromised. Despite being possible in the
ideal world, this property is hard to realise in a realistic scenario thus
we forceA to declare at the generation, if a key pair is compromised
or not.

Function Hiding: an SFS scheme is said to be function hiding if
the advantage of any PPT algorithm A in the SFS function hiding
experiment ExpSFS.FHid

SFS (A), of Figure 8 to output 1 is negligible.
Namely,

AdvSFS.FHid
A,SFS (λ) =

∣∣∣∣Pr(ExpSFS.FHid
SFS (A) = 1

)
− 1

2

∣∣∣∣ ≤ negl(λ)

Informally, it is impossible for an adversary to distinguish be-
tween two different function evaluations and signatures, i.e., given

the public verification key of a single function, the adversary cannot
infer information on “what function does the key verify”.

When comparing to the FS function privacy property, the SFS
function hiding requirement might appear counter-intuitive since,
in the verification phase, it is necessary to use the public-key pkf ,
which is related to the function f that must be hidden. The SFS func-
tion hiding property requires that “a public-key should just allow the
verification of the computation but must not provide any information
of the function”. This means that from a public-key pkf , it must be
hard to retrieve the corresponding function f .

4.2 An SFS Instantiation

In this subsection, we provide the instantiation of SFS scheme which
is a combination of the Fiore-Gennaro’s PVC variation (as given in
Definition 5) and the BLS variation (as given in Definition 4).

Definition 7. Let BLS be the variated BLS signature scheme of
Definition 4 and VC the variated Fiore-Gennaro PVC scheme of
Definition 5. Let the public parameter pp be the description of a bi-
linear group (p, g1, g2,G1,G2,GT , e) shared between the BLS and
the VC schemes. Define the SFS scheme for the polynomial function
family F , where every function can be expressed in a binary string
representation, with the following algorithms:

•SFS.Setup(λ)→ pp, (msk,mvk) : on input the security pa-
rameter λ, run BLS.Setup(λ)→ (MSK,MPK), or equiva-
lently VC.Setup, and output the master key-pair (msk,mvk) =
(MSK,MPK)
•SFS.KeyGen(msk, f)→ (pkf , skf) : on input the master secret

key msk and a polynomial function f , execute (s̃kf , ṽkf , ẽkf)←
VC.KeyGen(pp,msk, f), parse the secret key s̃kf = (α, gα2 ,K)

and run the algorithm (PKf , SKf)← BLS.KeyGen(λ,msk, α).

Output (pkf , skf) defined as
((

PKf , ṽkf
)
,
(
SKf , (g

α
2 ,K), ẽkf

))
•SFS.Sign(skf ,m)→ (y, σ) : given as input a secret key skf

and a message m, parse skf =
(
SKf , (g

α
2 ,K), ẽkf

)
and exe-

cute (σ̃m, ρ̃m)← VC.ProbGen((gα2 ,K),m), then σ̃y = (y, V)←
VC.Compute(ẽkf , σ̃m) and consequently compute the signature
σ̈y ← BLS.Sign(SKf , (y, ρ̃m, V)). Output (y, σ) =

(
y, (ρ̃m, V, σ̈y)

)

9

•SFS.Verify(mvk, pkg, y
′, σ′)→ {0, 1} : parse the inputs σ′ =

(ρ̃m′ , V, σ̈y′) and pkg = (PKg, ṽkg). Execute and output:

∧ VC.Verify(mvk, ṽkg, ρ̃m′ , (y
′, V))

?
= y′

BLS.Verify
(
mvk,PKg, (y

′, ρ̃′m, V), σ̈y′
) ?

= 1

Correctness: for all SFS.Setup(λ)→ (msk,mvk), functions f ∈
F , SFS.KeyGen(msk, f)→ (pkf , skf) and messages m and
SFS.Sign(skf ,m)→ (y, σ), it holds SFS.Verify(mvk, y, σ) = 1
which translates into

∧ VC.Verify(mvk, ṽkf , ρ̃m, (y, V))
?
= y

BLS.Verify
(
mvk,PKf , (y, ρ̃m, V), σ̈y

) ?
= 1

and by correctness of the underlying BLS and VC scheme, it is
indeed correct.

Succinctness: we observe that the SFS’s signature consists of three
group elements and it is of constant size, i.e. (ρ̃m, V, σ̈y) ∈ GT ×
G1 ×G1, thereby trivially achieving the succinctness property.

Unforgeability: in order to prove our instantiation to be unforge-
able, we will prove a reduction from the BLS unforgeability ex-
periment ExpBLS.UNF

BLS (B) to the SFS unforgeability experiment
ExpSFS.UNF

SFS (A).

Theorem 1. If for all PPT adversaries B it holds that the advantage
AdvBLS.UNF
B,BLS (λ) ≤ negl(λ), then for all PPT adversariesA it holds

AdvSFS.UNF
A,SFS (λ) ≤ negl(λ).

Proof: assume that there exists a PPT adversary A such that
AdvSFS.UNF
A,SFS (λ) = ∆ for some non-negligible ∆ > 0. We construct

an adversary R, running A as a subroutine, to break the unforge-
ability of the underlying BLS scheme. R executes VC.Setup and
obtains the master keys (msk,mvk). R receives from the BLS
challenger the public key PK.

WheneverA queries a compromised key pair via OSFS.key(f, i, 1),
R can generate the keys using VC.KeyGen and BLS.KeyGen and
therefore can generate keys and compute the signing algorithm and
answer to any adversarial signing query. On the other hand, when-
ever A queries a uncompromised pair OSFS.key(g, i, 0),R executes
VC.KeyGen and generates the keys (s̃kg, ẽkg, ṽkg). R samples a
random value z(g,i) sets the public key PK2 = PK · gz(g,i)2 .

By considering MSK = msk, R samples α, r ∈ Zp, computes
SK1 = gMSK+α+r

1 and PK1 = e
(
gMSK+α+r
1 , g2

)
and obtains

PKg = (PK1,PK2). Finally, it sends pkg = (PKg, ṽkg) to A.
In a nutshell, since the reduction R can create all the keys ex-

cept the challenged SK, R is always able to correctly execute
the verifiable computation scheme but not to sign the final out-
put of a computation of any message m on the uncompromised
functions g. This means that, whenever A queries the signing or-
acle OSFS.sign(g, i,m) for an uncompromised function (g, i), R
will sequentially execute VC.ProbGen(s̃kg,m) and the algorithm
VC.Compute(s̃kg, σ̃m) to obtain σ̃y = (y, V) and ρ̃m. At this
point,R queries the BLS challenger on the message (y, ρ̃m, V) and
obtains σ̈ which afterwards modifies into the value σ̈y = SK1 · σ̈ ·
H
(
(y, ρ̃m, V)

)z(g,i) .R replies to A with (y, (ρ̃m, V, σ̈y)).
Whenever A outputs the forgery (pk?, y?, σ?), the reduction

R parses the output σ? = (ρ̃?, V ?, σ̈?) and outputs the BLS
forgery

(
(y?, ρ̃?, V ?), σ̈? · SK−1

1 · H
(
(y?, ρ̃?, V ?)

)−z(g,i)). Ob-
serve that A must output a forgery for an uncompromised func-
tion that, by construction, is always based on the challenged BLS
scheme. The SFS unforgeability experiment’s requirements forces

A to always tamper at least one between (y?, σ?) which al-
ways translates into R creating a new tamper never queried be-
fore to BLS. Thus, we can conclude that ∆ = AdvSFS.UNF

A,SFS (λ) ≤
AdvBLS.UNF
B,BLS (λ) which is a contradiction. �

Remark 3. The unforgeability experiment ExpSFS.UNF
SFS. (A) requires

the adversary A to provide a tamper for a challenged public key
pk? of a function g which must exist and be uncompromised. This
means that A queried OSFS.key(g, ∗, 0) explicitly or implicitly via
the signing oracle, and only owns the public key pk?.

As a matter of curiosity, Theorem 1’s proof can be interpreted as
the case where A cannot forge even if the secret keys are partially
compromised. In particular, consider that the proof’s reduction R
returns to A all the VC.KeyGen generated keys (s̃kg, ẽkg, ṽkg)
which would allow A to always pass the verification VC.Verify.
Despite this additional concession, the proof shows that A is still
unable to provide a tamper for BLS. sinceA does not hold the BLS.
signing secret key, thus making it impossible to create a SFS tamper.

Function Hiding: in order to prove our instantiation to be func-
tion hiding, we will show a reduction from the VC function privacy
experiment ExpVC.Priv

VC (B) to the SFS function hiding experiment
ExpSFS.FHid

SFS (A).

Theorem 2. If for all PPT adversaries B it holds that the advantage
AdvVC.Priv
B,VC (λ) ≤ negl(λ), then for all PPT adversaries A it holds

AdvSFS.FHid
A,SFS (λ) ≤ negl(λ).

Proof: assume the existence of a PPT adversary A such that
AdvSFS.FHid
A,SFS (λ) = ∆ for some non-negligible ∆ > 0. We then con-

struct an adversaryB, runningA as a subroutine, to break the privacy
security of the underlying VC scheme. Let R be the reduction from
the VC.Priv experiment to the SFS.FHid one and therefore B the
final adversary that uses R and A. R execute VC.Setup(λ)→
(m̃sk, m̃pk) and sends mvk = m̃pk to the SFS adversary A. A
replies with the challenge (f0,m0, f1,m1) which is forwarded
to the VC.Priv challenger by R. R receives (ṽkfb , σ̃yb , ρ̃b)
where σ̃yb = (y, Vb) with y which is equal to f0(m0) = f1(m1).
R executes BLS.KeyGen(λ,msk, α) for some random α ∈
G and obtain SK = (SK1,SK2) = (gmsk+α+r

1 , k) and PK =

(PK1,PK2) = (e (g1, g2)α , gk2), then it signs BLS.Sign(SK, y)
and obtains σ̈. The reduction R then replies to the A with the
tuple (ṽkfb , σ̃

?
yb , ρ̃b,PK, σ̈) where σ̃?yb = (y, Vb

?) which is equal
to (y, Vb · g

msk·y
1). Finally, A’s guess is just forwarded to the

challenger in VC’s privacy game.
By observing the SFS.Verify algorithm, we get

∧ VC.Verify(mvk, ṽkfb , ρ̃mb , (y, Vb
?))

?
= y

BLS.Verify(mvk,PK,BLS.Sign(SK, y))
?
= 1

and since the right side is always true, the left side is equivalent to

VC.Verify(mvk, ṽkfb ,ρ̃mb , (y, Vb
?)) ⇐⇒

⇐⇒ e
(
Vb
?, g2

) ?
= (mvk · ṽkfb)y · ρ̃mb

⇐⇒ e
(
Vb · g

msk·y
1 , g2

)
?
= mvky · ṽk

y
fb · ρ̃mb

⇐⇒ mvky · e (Vb, g2)
?
= mvky · ṽk

y
fb · ρ̃mb

⇐⇒ e (Vb, g2)
?
= ṽk

y
fb · ρ̃mb

⇐⇒ VC.Verify(ṽkfb , ρ̃mb , (y, Vb))

Therefore, if the adversary A has an advantage ∆, the built adver-
sary B for VC.Priv that uses R has advantage ∆. In other word,
we conclude that ∆ = AdvSFS.FHid

A,SFS (λ) ≤ AdvVC.Priv
B,VC (λ) which is a

contradiction. �

10

5 Conclusion

Verifying the correctness of computations is a very valuable property
considering the ever-increasing cloud-assisted computing paradigm.
This paper defines Strong Functional Signature (SFS) as an en-
hanced version of functional signatures with verifiable computation
properties. In a nutshell, SFS introduce a functional public key pkf
that works as a commitment for a function f . This public-key al-
lows in verification to guarantee the correct computation of the
committed function without revealing any information on the func-
tion and to distinguish between different computed functions in a
privacy-preserving way. Furthermore, we provide a concrete instan-
tiation of an SFS scheme and prove that it satisfies the properties of
unforgeability and function hiding.

Acknowledgment

This work was partially supported by the Swedish Research Council
(Vetenskapsrådet) through the grant PRECIS (621-2014-4845).

6 References
1 Michael Backes, Sebastian Meiser, and Dominique Schröder. Delegatable func-

tional signatures. In Public-Key Cryptography–PKC 2016, pages 357–386.
Springer, 2016.

2 Mihir Bellare and Georg Fuchsbauer. Policy-based signatures. In International
Workshop on Public Key Cryptography, pages 520–537. Springer, 2014.

3 Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable
collision resistance to succinct non-interactive arguments of knowledge, and back
again. In Proceedings of the 3rd Innovations in Theoretical Computer Science
Conference, pages 326–349. ACM, 2012.

4 Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive com-
position and bootstrapping for snarks and proof-carrying data. In Proceedings of
the forty-fifth annual ACM symposium on Theory of computing, pages 111–120.
ACM, 2013.

5 Dan Boneh, Ben Lynn, and Hovav Shacham. Short Signatures from the Weil
Pairing. Journal of Cryptology, 17(4):297–319, September 2004.

6 Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional Signatures and Pseu-
dorandom Functions. In Hugo Krawczyk, editor, Public-Key Cryptography –
PKC 2014, Lecture Notes in Computer Science, pages 501–519. Springer Berlin
Heidelberg, 2014.

7 W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans. Inf.
Theor., 22(6):644–654, September 2006.

8 Dario Fiore and Rosario Gennaro. Publicly Verifiable Delegation of Large Poly-
nomials and Matrix Computations, with Applications. In Proceedings of the 2012
ACM Conference on Computer and Communications Security, CCS ’12, pages
501–512, New York, NY, USA, 2012. ACM.

9 Dario Fiore, Rosario Gennaro, and Valerio Pastro. Efficiently Verifiable Compu-
tation on Encrypted Data. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’14, pages 844–855, New York,
NY, USA, 2014. ACM.

10 Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable com-
puting: Outsourcing computation to untrusted workers. In Annual Cryptology
Conference, pages 465–482. Springer, 2010.

11 Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments
from all falsifiable assumptions. In Proceedings of the forty-third annual ACM
symposium on Theory of computing, pages 99–108. ACM, 2011.

12 Shafi Goldwasser, Silvio Micali, and Ronald L Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM Journal on Computing,
17(2):281–308, 1988.

13 Charalampos Papamanthou, Elaine Shi, and Roberto Tamassia. Signatures of
correct computation. In Theory of Cryptography, pages 222–242. Springer, 2013.

14 Bryan Parno, Mariana Raykova, and Vinod Vaikuntanathan. How to delegate and
verify in public: Verifiable computation from attribute-based encryption. In Theory
of Cryptography Conference, pages 422–439. Springer, 2012.

11

