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Abstract Encrypting data with a semantically secure cryptosystem guar-
antees that nothing is learned about the plaintext from the ciphertext.
However, querying a database about individuals or requesting for sum-
mary statistics can leak information. Differential privacy (DP) offers a
formal framework to bound the amount of information that an adversary
can discover from a database with private data, when statistical findings
of the stored data are communicated to an untrusted party. Although
both encryption schemes and differential private mechanisms can pro-
vide important privacy guarantees, when employed in isolation they do
not guarantee full privacy-preservation.
This paper investigates how to efficiently combine DP and an encryption
scheme to prevent leakage of information. More precisely, we introduce
and instantiate differentially private encryption schemes that provide
both DP and confidentiality. Our contributions are five-fold, we: (i) de-
fine an encryption scheme that is not correct with some probability
αm1,m2 i.e., an αm1,m2 -correct encryption scheme and we prove that it
satisfies the DP definition; (ii) prove that combining DP and encryption,
is equivalent to using an αm1,m2 -correct encryption scheme and provide
a construction to build one from the other; (iii) prove that an encryption
scheme that belongs in the DP-then-Encrypt class is at least as compu-
tationally secure as the original base encryption scheme; (iv) provide
an αm1,m2 -correct encryption scheme that achieves both requirements
(i.e., DP and confidentiality) and relies on Dijk et al.’s homomorphic
encryption scheme (EUROCRYPT 2010); and (v) perform some statisti-
cal experiments on our encryption scheme in order to empirically check
the correctness of the theoretical results.

Keywords: Differential privacy, Encryption, Homomorphic encryption

1 Introduction

The Internet has evolved into a powerful platform interconnecting billions of
users and has changed the way we do business, communicate with our friends,
and perform our financial transactions. In this new communication paradigm,
we leave our digital fingerprints everywhere: medical records, financial records,
web search histories, and social network data. There is no doubt that the privacy
implications of this increased connectivity can lead to oppressive electronic data
surveillance.



Let us consider a real-world scenario: a company sells electricity to differ-
ent customers in large geographical areas. The company owns and distributes
a smart-metering grid [6] in order to offer the lowest price possible for its cus-
tomers. Alice, that wants to pay as less as possible for her electrical consumption,
signs a contract with the company by providing her personal information and
accepts to install in her home different sensors that will measure the electrical
consumption during the day and transmit this data to the electricity company.
The company collects data from all its customers in an entire geographical region
and, by performing statistical analysis on the collected data, is able to optimize
the electrical supply distribution. Alice worries that her data may be used in a
malicious way and wants to get guarantees that her privacy will be respected.
She is aware that by analysing the data of her power consumption, someone may
deduce private information such as when she is at home and what habits she
may have. She wants her personal information to be confidential (encrypted)
when they are used by a third party but she accepts that the company may use
her data for statistical analysis in order to optimise the supply distribution.

This particular problem might raise different privacy concerns that we cate-
gorize into two classes, as represented in Figure (1):

– An individual privacy breach can be described as the act of deducing private
information for an individual from some public information.
In this case, the electricity company can deduce Alice’s habits just by ob-
serving her power consumption measurements.

– A group privacy breach can be defined as the act of deducing a single indi-
vidual private information from public statistical information of groups of
people.
Let us suppose that the electricity company offers an open-source interface
where everyone can query and obtain statistical information about the com-
pany’s customers. The only limitation is that the statistics are not computed
if the sample of customers is lower than five people.
Eve wants to find out Alice’s habits for malicious reasons. To achieve that she
checks on every social network and finds out that Alice is a student and she
lives in a one-room apartment. Eve starts querying the company’s database
by asking for the “average daily power consumption of a student that lives in
an one-room apartment” and does not obtain any information because the
sample is too small. Then, Eve asks for the “average daily consumption of
people that live in an one-room apartment” and the “average daily consump-
tion of people that live in an one-room apartment that are not students”.
Thus, Eve can deduce some approximation of Alice’s habits by computing
the difference between the two values and obtain the “average daily con-
sumption of a student that lives in an one-room apartment” in which Alice
is contained.

In this paper, we do not deal with the problem of inferring some private
information about an individual (such as habits) from other private data, such
as consumption, from a trusted third party (e.g., a company). However, we care
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Figure 1: Individual and group privacy breaches.

about inferring private information from publicly available data published by a
third party (e.g., the billing information). To protect against either of the two
types of privacy breaches, different notions of privacy and methodologies that
preserve privacy have been defined in the literature such as t-closeness [11],
k-anonymity [5], `-diversity [8]. However, these notions of privacy have been
proven to be weak, since even when they are employed information leakage and
de-anomyization attacks can still be performed.

Differential privacy (DP) introduced by Dwork et al. [3], addresses the prob-
lem of learning as little as possible about an individual, while learning useful
information about a population. It offers a formal framework that can be used
to bound the amount of info that an adversary can discover from a database that
contains private data, when statistical findings of the stored data are communi-
cated to an untrusted party. More precisely, DP assumes the existence of a data
aggregator, who is publishing statistics about a population. In other words, DP is
a formalism that allows statistical analysis of private datasets while minimizing
a group privacy breach. Informally, by employing a DP-mechanism to respond to
a query, we are publishing noisy statistics about a dataset. The amount of noise
should depend on the sensitivity of the queried statistic to the input, i.e., “how
much the query result would change if one single entry is changed or removed?”.
This means that if the query result will change a lot, we have to introduce more
noise in order to “hide” the influence of the changed/removed entry in the query
result. Otherwise, a drop in the query result will reveal partial information on
the modified entry.

Complementary, a semantically secure encryption scheme guarantees the con-
fidentiality of the encrypted information i.e., no-one can decrypt and obtain the
original message of a ciphertext. As a plus, an homomorphic encryption scheme
[9,12] allows the computation of particular functions on the encrypted data. In-
formally, we can encrypt our messages and then compute a particular function
on the ciphertext and obtain a new ciphertext that will be decrypted to the
function computed on the original plaintext messages.
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The solution required to avoid any possible information leakage should guar-
antee privacy breach resistance (provided by the DP framework) and confi-
dentiality of the encrypted data (provided by a semantically secure encryption
scheme). Each of these frameworks, if employed alone, does not provide full pri-
vacy guarantees. In this paper, we investigate for the first time, how we may
achieve both differential privacy and confidentiality and introduce the concept
of a differentially private encryption scheme.

Related Work: Privacy-preservation has received a lot of attention in the lit-
erature and multiple semantically secure crypto systems as well as differential
private mechanisms have been proposed. However, existing work on encrypted
computation and differential privacy has proceeded mainly in isolation. In order
to avoid all possible information leakage, while guaranteeing both confidentiality
and differential privacy, the most common solution is to process the plaintext
data in a DP-mechanism and then encrypt the result using a secure homomor-
phic encryption scheme. The ciphertext will guarantee confidentiality until the
decryption phase, while the plaintext message will satisfy the DP definition.
In the literature, it is possible to find different solutions [10,1,7] that use this
paradigm: a DP-mechanism and an encryption scheme; used sequentially. We
will define these solutions that combine a DP-framework and an Encryption-
framework as an element in the DP-then-Encrypt class (formally defined in Def.
(5)). Our solution has as a starting point Dwork et al.’s definition of an α-correct
encryption scheme [4] i.e., an encryption scheme that can wrongly decrypt (or
encrypt) a message with some probability bounded by α. Dwork et al. [4] defined
an algorithm that takes an α-correct encryption scheme and returns a new en-
cryption scheme, built using the α-correct one, that is correct (or almost-correct).
We provide a more detailed definition of α-correctness, where we are interested
in the precise probability of encrypting a message m1 and obtaining a message
m2. Our definition is the first result that provides the sufficient conditions for
an α-correct encryption scheme in order to achieve ε-DP. In order to build a
concrete instantiation of a differentially private encryption scheme, we rely on
Dijk et al.’s [2] homomorphic public-key encryption scheme over the integers.

Our Contributions: Our main idea is defining the class Encrypt+DP that
contains all the encryption schemes that are differential private and achieve
privacy and confidentiality atomically, as represented in Figure (2). As a starting
point, we define an αm1,m2

-correct encryption scheme (Def. (4)) that will permit
an encryption scheme to be not correct, i.e., the decryption of the encryption
of a specific message m1 can be a different message m2 with probability αm1,m2

.
From this definition, we prove that an αm1,m2-correct 1-bit encryption scheme
satisfies the Dwork’s DP definition [3] with ε(αm1,m2)-DP, i.e., the DP parameter
ε will be strongly related to the probabilities αm1,m2

of the encryption scheme.
Then, we prove in Proposition (2) that the more general N -element encryption
scheme achieves ε(αm1,m2

)-DP.
Furthermore, we formally define the DP-then-Encrypt and Encrypt+DP classes.

As our main result, we prove in Proposition (4) that the two classes are equiv-
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Figure 2: The difference between the DP-then-Encrypt (on the top) and our so-
lution (at the bottom).

alent and provide a construction to switch between them. This means that our
solution of an αm1,m2-correct encryption scheme can be re-written with a DP-
then-Encrypt encryption scheme.

As the second main contribution, in Lemma 1, we reduce the security of
a DP-then-Encrypt encryption scheme to the security of the correct encryption
scheme framework. The considered security-computational model is built around
a non-interactive adversary that has access only to the public key and a particular
ciphertext and it guesses the original plaintext. This security model is a necessary
condition in order to satisfy more complex security models like IND−CPA,
IND−CCA, etc.

The last contribution is a concrete αm,m-correct encryption scheme inside
Encrypt+DP . We modify the Dijk et al. [2] integer homomorphic encryption
scheme and we show how to compute the probability αm,m. As a final point,
we exploit the structure of the scheme and obtain the correspondent DP-then-
Encrypt encryption scheme that relies on Dijk et al.’s homomorphic encryption
scheme.

Paper Organisation: The paper is organised as follows. In Section (2), we
describe the notation used throughout the paper and the definitions we are
based on. In Section (3), we give our definition of αm1,m2

-correct encryption
schemes and prove that it has ε(αm1,m2

)-DP. In Section (4), we show the equality
between our framework, Encrypt+DP , and the DP-then-Encrypt . The proof will
sketch an algorithm that transforms a correct encryption scheme into an αm1,m2 -
correct encryption scheme. We define the security-hardness model and prove the
security-hardness of a DP-then-Encrypt encryption scheme with respect to the
corresponding base (correct) encryption scheme. In Section (5), we provide an
instantiation of an αm,m-correct encryption scheme starting from Dijk et al.’s
[2] encryption scheme and we prove its security.
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2 Preliminaries

In this section, we will define the notation used in the paper and the basic
definitions of the notions we employ in the rest of the paper.

2.1 Notation

We always denote withM the message-space. We denote withK = Ksk×Kpk the
key-space where Ksk is the secret-key-space and Kpk is the public key-space and
with C the ciphertext-space. N is the set of natural numbers (i.e., integers z ≥ 0).
Then we define intervals with [a, b] = {a, a+ 1, · · · , b} and (a, b) = [a, b] \ {a, b}.
We denote with 1A the identity function on the set A. We define with the
symbol ', a probabilistic equality between functions, i.e., f(x) ' g(x) means
P(f(x) = g(x)) = p for some p ∈ [0, 1]. We denote with negl(n) a negligible
function. We denote with a (mod n) the modulo n of a in the interval

(
−n2 ,

n
2

]
.

We denote with UA the uniform distribution over the set A. We denote M times
the cartesian product of a set A as AM and the range of a function f with
domain X as Rg(f) := {f(x) : x ∈ X}. For a set X, we define with P(X) the
power-set of X, i.e., the set of all the subset of X.

2.2 Basic Definitions

In order to define differential privacy, we will define a data-set:

Definition 1 (Dataset). A dataset D is defined on an alphabet A so that either
D ∈ An for a fixed dataset size n, or D ∈ A∗ with A∗ =

⋃∞
i=0A

i being the union
of all product sets of A.

Definition 2 (ε-differential privacy [3]). A randomized function Q is ε-
differentially private if for all data-sets D1 and D2 differing on at most one
element, i.e., the `0-distance between D1 and D2 is at most 1, and all S ⊆ Rg(Q),
it holds

P(Q(D1) ∈ S) ≤ exp(ε) · P(Q(D2) ∈ S)

Remark 1. For finite ε, we must have that the distribution of a DP-mechanism
has always the same range, i.e., for every D0, D1 ⊂ M it holds Rg(Q(D0)) =
Rg(Q(D1)).

In our construction, we will use messages as databases and we will always
use the `0-distance; for two different messages m,m′, the distance is always 1.

Below we provide Dwork et al.’s [4] definition of an α-correct (public-key)
encryption scheme:

Definition 3 (Dwork et al.’s α-correct public-key encryption scheme
[4]). Let (G,E,D) be any public-key encryption scheme and α : N → [0, 1] an
arbitrary function.
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(a) (G,E,D) is all-keys α-correct if for every pair (sk,pk) generated by G on
input 1λ, it holds that P(Dsk(Epk(m)) 6= m) ≤ 1−α(λ), where the probability
is taken over the choice of m ∈ Un, and over the random coins of E and D.

(b) (G,E,D) is almost-all-keys α-correct if with probability 1 − negl(λ) over
the random coins of G used to generate (sk,pk) on input 1λ, it holds that
P(Dsk(Epk(m)) 6= m) ≤ 1 − α(λ) where the probability is taken over the
choice of m ∈ Un and over the random coins of E and D.

(c) (G,E,D) is almost-all-keys perfectly correct if with probability 1 − negl(λ)
over the random coins of G used to generate (sk,pk) on input 1λ, it holds
that P(Dsk(Epk(m) 6= m) = 0, where the probability is taken over the choice
of m ∈ Un and over the random coins of E and D.

3 Our Definition of αm1,m2-correct Encryption Scheme

In this section, we define an αm1,m2
-correct encryption scheme and compare

it to the Dwork et al.’s Definition (3). Then, we prove that an αm1,m2-correct
encryption scheme satisfies the definition of differential privacy with respect to
the function Q := D ◦ E ' 1M. We start by presenting and describing the
main constructions and properties for the case of a 1-bit encryption scheme,
as the simplest example possible, and after that we generalize the result to an
N -element encryption scheme.

3.1 Definition

Our goal is to formally define the possibility that an encryption scheme can
wrongly decrypt a message with some well defined probability.

Definition 4 (αm1,m2-correctness encryption scheme). Let (G,E,D) be
an encryption scheme defined over (M,K, C) as

– Generation algorithm: let λ ∈ N be a security parameter. G is defined
as a probabilistic algorithm that given a security parameter 1λ, returns a
key-pair (sk,pk) ∈ K.

– Encryption algorithm: let m ∈ M, pk ∈ Kpk and c ∈ C. E is defined
as an algorithm that takes as input a public key pk and a message m, and
returns a ciphertext c.

– Decryption algorithm: let m ∈ M, sk ∈ Ksk and c ∈ C. D is defined as
an algorithm that given a secret key sk and a ciphertext c, returns a plaintext
m.

(G,E,D) is said to be an αm1,m2 -correct encryption scheme if, for all m1,m2 ∈
M, a fixed λ ∈ N and a fixed key-pair (sk,pk)←[ G(1λ), it holds

αm1,m2
((sk,pk)) := P(D(sk, E(pk,m1)) = m2)

If for all m ∈ M it holds αm,m = 1, then (G,E,D) is said to be a correct
encryption scheme.
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In simple words, in an αm1,m2
-correct encryption scheme, the probability of

encrypting m1 and decrypting into m2 using the key-pair (sk,pk) is equal to
αm1,m2 .

Remark 2. From the definition above, it is easy to see that every encryption
scheme is an αm1,m2

encryption scheme.

Remark 3. The αm1,m2
((sk,pk)) values are strongly connected with the choice

of (sk,pk). We will abuse notation and drop the key-pair since in our arguments,
we will always fix some key-pair (sk,pk).

Remark 4. Our αm1,m2
-correctness (Def. 4) and Dwork et al.’s definition (Def.

3) describe the same encryption schemes.

Proof. – Our definition ⇒ Dwork et al.’s definition:
Let (G,E,D) be any αm1,m2

-correct public-key encryption scheme. Let us
consider

α = max
m∈M,(sk,pk)∈K

αm,m((sk,pk))

Let (sk,pk) ∈ K be any possible random key and m ∈ M any possible
random message.

1− P(Dsk(Epk(m)) 6= m) = P(Dsk(Epk(m)) = m) = αm,m((sk,pk)) ≤ α

And so, we have that (G,E,D) is an α-correct encryption scheme in Dwork
et al.’s Definition (3).

– Our definition ⇐ Dwork et al.’s definition: Follows directly from Remark
(2)

ut

Dwork et al.’s definition describes a global upper bound on the correctness
probability of an encryption scheme, while our definition defines the precise
values of αm1,m2 of the encryption scheme.

3.2 Construction of an αm1,m2-correct 1-bit Encryption Scheme

Fix M = {0, 1}. Let (G,E,D) be an αm1,m2
-correct encryption scheme de-

fined over (M,K, C). Let us fix a key pair (sk,pk) ←[ G(1λ) and let Q(m) =
D(sk, E(pk,m)). It holds:

Rg(Q) = {0, 1} D0 ={0}, D1 = {1}
S ∈ P(Rg(Q)) = {∅, {0} = S0, {1} = S1, {0, 1} =M}

Q(m) = D(sk, E(pk,m)) ' m ∀m1,m2∈M P(Q(m1) = m2) = αm1,m2

Proposition 1. An αm1,m2
-correct 1-bit encryption scheme such that for all

m1,m2 ∈ M it holds that P(D(sk, E(pk,m1)) = m2) = αm1,m2
, achieves

ε(αm1,m2
)-differential privacy where

ε(αm1,m2
) := inf

ε :

eε ≥ α0,0

α1,0
, eε ≥ α0,1

α1,1

eε ≥ α1,0

α0,0
, eε ≥ α1,1

α0,1
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Proof. Let us prove that any αm1,m2
-correct encryption scheme satisfies the ε-DP

definition.
From the Definition (2), we can state that P(Q(Di) ∈ Sj) means that we

encrypt the bit i and we decrypt it into the bit j. We can impose the DP definition
in all possible cases in order to study the differential privacy coefficient ε:

– If S = ∅, all the probabilities are 0, and so the ε-DP definition holds for
every ε ∈ R since 0 ≤ 0

– If S = {0, 1} = M, all the probabilities are 1, and so the ε-DP definition
holds since 1 ≤ eε and ε ≥ 0

– If S = {0} = S0:
• P(Q(D0) ∈ S0) ≤ eε P(Q(D1) ∈ S0) becomes α0,0 ≤ eεα1,0 =⇒ eε ≥ α0,0

α1,0

• P(Q(D1) ∈ S0) ≤ eε P(Q(D0) ∈ S0) becomes α1,0 ≤ eεα0,0 =⇒ eε ≥ α1,0

α0,0

– If S = {1} = S1:
• P(Q(D1) ∈ S1) ≤ eε P(Q(D0) ∈ S1) becomes α1,1 ≤ eεα0,1 =⇒ eε ≥ α1,1

α0,1

• P(Q(D0) ∈ S1) ≤ eε P(Q(D1) ∈ S1) becomes α0,1 ≤ eεα1,1 =⇒ eε ≥ α0,1

α1,1

We can conclude that for every αm1,m2
∈ [0, 1], we achieve ε-DP where ε has

to be in the convex solution set E(αm1,m2
) defined as:

for αm1,m2
∈ [0, 1] E(αm1,m2

) :=

ε :

eε ≥ α0,0

α1,0
eε ≥ α0,1

α1,1

eε ≥ α1,0

α0,0
eε ≥ α1,1

α0,1


from which we can define the curve

ε(αm1,m2
) = inf E(αm1,m2

)

that defines the minimum ε such that the ε-DP definition holds for the encryption
scheme. ut

Proposition (1) is a special case of Proposition (2).

3.3 Construction of an αm1,m2-correct N-Elements Encryption
Scheme

Let #M = N be the message space with uniform distribution of being trans-
mitted, i.e., for all m ∈ M, P(M ∈ {m}) = 1

#M . Fix a key-pair (sk,pk) and
then for all m1,m2 ∈M it holds

αm1,m2 = P(D(sk, E(pk,m1)) = m2 | m1)

Proposition 2. An N -element αm1,m2-correct encryption scheme such that for
all m1,m2 ∈ M it holds that P(D(sk, E(pk,m1)) = m2) = αm1,m2

. Then, the
encryption scheme achieves ε(αm1,m2

)-differential privacy where

ε(αm1,m2
) := inf

{
ε

∣∣∣∣∣ ∀D0, D1 ∈M, S ⊆M.

∑
m2∈S αD0,m2∑
m2∈S αD1,m2

≤ eε
}
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Proof. Let Q = D◦E and S ⊆M as before. Then, P(Q(D0) ∈ S) =
∑
m2∈S αD0,m2

.
Imposing the DP definition, we have that for all D0, D1 ∈ M such that the

two elements are different and for every S ⊆M it holds:

P(Q(D0) ∈ S) ≤ eε P(Q(D1) ∈ S) =⇒
∑
m2∈S

αD0,m2
≤ eε

( ∑
m2∈S

αD1,m2

)

We can manipulate the equation and obtain
∑
m2∈S αD0,m2∑
m2∈S αD1,m2

≤ eε

We define the convex set

E(αm1,m2
) :=

{
ε

∣∣∣∣∣ ∀D0, D1 ∈M, S ⊆M.

∑
m2∈S αD0,m2∑
m2∈S αD1,m2

≤ eε
}

The value ε(αm1,m2
) = inf E(αm1,m2

) will satisfy the DP-definition. ut

3.4 Fix ε, find αm1,m2

The parameters ε and αm1,m2
are dependent one from the other since for all

D0, D1 ∈M and for all S ⊆M, it holds∑
m2∈S αD0,m2∑
m2∈S αD1,m2

≤ eε (1)

The goal of finding the best αm1,m2 that achieves a fixed ε-DP depends on
practical requirements and conditions that we want to impose on the probabili-
ties αm1,m2

, i.e., “maximizing the difference between two different messages” or
“having a specific probability distribution”.

For completeness, we will provide a simple solution in a particular case.

Proposition 3. Let αm1,m2
be the probabilities of an N -element encryption

scheme, where for all m ∈ M, it holds αm,m = α and for all m′ ∈ M with
m′ 6= m, it holds αm,m′ = β < α. If α ≥ (N − 1)β, then the scheme achieves

log
(
α
β

)
-DP.

Proof. In order to prove the thesis, we have to find the D0, D1, S that maximize
the left side of Equation (1). We can consider the polynomials fα(x) = α + xβ
and fβ(x) = β + xβ. From the hypothesis, we have that fα(x) ≥ fβ(x) for all
x ∈ R and x ≥ 0. In particular, this is true for the integer values between 0 and

N − 1. Since fα(x)
fβ(x)

is a decreasing function for all x ∈ R and x ≥ 0, we can

conclude that for i ∈ [0, N − 1] integers, it holds:

α

β
=
fα(0)

fβ(0)
≥ fα(i)

fβ(i)
≥ fα(i+ 1)

fβ(i+ 1)
≥ · · · ≥ fα(N − 1)

fβ(N − 1)

β

α
=
fβ(0)

fα(0)
≤ fβ(i)

fα(i)
≤ fβ(i+ 1)

fα(i+ 1)
≤ · · · ≤ fβ(N − 1)

fα(N − 1)
=

(N − 1)β

(N − 2)β + α
(2)
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From Equation (2) and since α
β ≥

β
α from the hypothesis, we have

(N − 1)β

(N − 2)β + α
≤ α

(N − 2)β + α
≤ α

β

and, in Equation (1) ∑
m2∈S αD0,m2∑
m2∈S αD1,m2

≤ α

β
≤ eε (3)

We can so conclude that the minimal ε for which the equation holds is log
(
α
β

)
and so the N -element encryption scheme will achieve log

(
α
β

)
-DP.

ut

4 Equality Between DP-then-Encrypt and Encrypt+DP

In this section, we define the two main methods of combining an encryption
scheme with a differential private mechanism: (i) the DP-then-Encrypt and (ii)
the Encrypt+DP . We then prove a proposition on the equivalence between the
DP-then-Encrypt and the Encrypt+DP classes. After this, we prove that combin-
ing a differential privacy framework with a correct encryption scheme is at least
as computationally secure as the relying encryption scheme.

Definition 5. Define the DP-then-Encrypt class as the set of all the encryption
schemes (G′, E′, D′) such that

G′(1λ) := G(1λ) E′(pk,m) := E(pk,Q(m)) D′(sk, c) := D(sk, c)

for some (G,E,D) correct encryption scheme on (M,K, C) and Q ' 1M a
DP-mechanism.

It is trivial that D′(sk, E′(pk,m)) = Q(m).

Definition 6. Define the Encrypt+DP class as the set of all the αm1,m2
-correct

encryption schemes (Ĝ, Ê, D̂) on (M,K, C). From the Proposition (2), we have
that (Ĝ, Ê, D̂) is ε(αm1,m2

)-DP and it holds D̂(sk, Ê(pk,m)) ' 1M(m).

In a nutshell, the DP-then-Encrypt class contains all the different combina-
tions of the identity map as a DP-mechanism and a correct encryption scheme.
On the other hand, the Encrypt-then-DP achieves the identity map as a DP-
mechanism directly in the αm1,m2

-correct encryption scheme used.
In order to prove the equality between the two classes, we define a probability

“permutation” as:

Definition 7. Let m1,m2 ∈ M. Let us denote a probability “permutation” π
as the random variable on M with measure probability of the event “permute
the message m1 into the message m2” defined as P(π(m1) = m2) = αm1,m2 .
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Remark 5. Let π be a probability permutation. Then, π is a DP-mechanism.
This means it is a ε(αm1,m2

)-DP mechanism (or it achieves ∞-DP).

Proposition 4. The DP-then-Encrypt class is equivalent to the Encrypt+DP
class.

Proof. – DP-then-Encrypt ⊆ Encrypt+DP
Let (G′, E′, D′) be a DP-then-Encrypt encryption scheme. Let us fix a key pair
(sk,pk)←[ G′(1λ). Trivially using Remark (2), there exists an αm1,m2

∈ [0, 1]
such that for all m1,m2 ∈M it holds:

P((D′(sk, E′(pk,m1)) = m2) = P(Q(m1) = m2) = αm1,m2

From the Definition (4), (G′, E′, D′) is an αm1,m2
-correct encryption scheme

and so from Proposition (2), we have that (G′, E′, D′) is contained in the
class Encrypt+DP of Definition (6).

– DP-then-Encrypt ⊇ Encrypt+DP
Let (Ĝ, Ê, D̂) be an αm1,m2

-correct encryption scheme such that D̂(sk, Ê(pk,m)) '
1M(m). For every m1,m2 ∈M, we define the random variable π :M→M
as

P(π(m1) = m2) := P(D̂(sk, Ê(pk,m1)) = m2) = αm1,m2

π is a probability permutation as in Definition (7) and for Remark (5), we
have that π is a DP-mechanism.
Let us define (Ĝ, E,D) a correct encryption scheme such that:
• Ĝ is the same key generator as the αm1,m2

-correct encryption scheme
• E : K×M→ C is an encryption algorithm
• D : K×C →M is a decryption algorithm

and for all (sk,pk)← [ Ĝ(1λ), it holds that for all m ∈M

P(D(sk, E(pk,m)) = m) = 1

We can claim that E,D always exist and we can consider any injective func-
tion φ :M→ C with left inverse φ−1. Let us define:

E(pk,m) := φ(m) D(sk, c) := φ−1(c)

For (Ĝ, E,D), we have

P(D(sk, E(pk,m)) = m) = P(φ−1(φ(m)) = m) = P(m = m) = 1

In order to conclude, we need to prove that (Ĝ, E,D) with π as in Defini-
tion (5), acts like an encryption scheme (G′, E′, D′) that is contained in the
Encrypt+DP class of Definition (6). Fix a key pair (sk,pk)← [ Ĝ(1λ):

P(D̂(sk, Ê(pk,m1)) = m2) = αm1,m2

= P(π(m1) = m2)

= P(φ−1(φ(π(m1))) = m2)

= P(D(sk, E(pk, π(m1))) = m2)

= P(D′(sk, E′(pk,m1)) = m2)

ut

12



We will now define a concept of security-hardness with respect to an adver-
sary without specifying the computational model used.

Definition 8. The adversary A for an encryption scheme (G,E,D) is an algo-
rithm that takes the public key1 and a ciphertext and it outputs a guess m′ for
the message m.

A : Kpk×C →M A(pk, E(pk,m)) 7→ m′

An encryption scheme (G,E,D) is said to be security-hard with respect to the
adversary A (in some computational model) if

P(A(pk, E(pk,m)) = m) ≤ 1

#M
+ negl

Informally, we defined the simplest adversary possible whose goal is to guess
the correct decryption of a ciphertext given all the public information possible.
In order to obtain a general result, we do not impose any complexity-hardness
assumption. The security-hardness adversary is a weaker adversary with respect
to the ones from IND−CPA, IND−CCA (and so on). On the other hand, for
an encryption scheme, being security-hard is a necessary condition in order to
achieve any security requirement: the security-hardness adversary can be used
as a distinguisher in a more structured security model.

Lemma 1. Let (G,E,D) be a correct encryption scheme which is security-hard.
Let Q ' 1M DP-mechanism. Then the combination of Q with (G,E,D), which
is in the DP-then-Encrypt class, is security-hard. In other word, the security-
hardness of the combination Q with (G,E,D) is at least computationally hard
as the security-hardness of (G,E,D).

Proof. We have to show and prove:

1. Reduce every instance of a (G,E,D) correct encryption scheme to an in-
stance in the DP-then-Encrypt class.

2. We prove the lemma by contradiction and Reductio ad absurdum: If there
exists an adversary A with non-negligible advantage for the DP-then-Encrypt
instance, there will exist an adversary B with non-negligible advantage for
the (G,E,D) correct encryption scheme. Let us suppose that there exists A
with non-negligible advantage, and let us suppose that all B have negligible
advantage. Then we prove that it is a contradiction, and so we conclude.

The reduction is trivial: we can just consider as the instance in the DP-then-
Encrypt class, (G,E,D) encryption scheme with the deterministic identity map
as the DP-mechanism.

For a fixed key (sk,pk) ← [ G(1λ), suppose there exists an adversary A for
the DP-then-Encrypt scheme, it means A(m) := A(pk, E(pk,Q(m))) will output

1 It is possible to give a pure symmetric key encryption scheme definition but we do
not need it.
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the guess m′ and the guess will be correct with probability 1
#M + δ with δ > 0

non-negligible. Formally P(A(pk, E(pk,Q(m))) = m) = 1
#M + δ

Let us suppose that for all the adversaries B of the original scheme such that
B(m) := B(pk, E(pk,m)), we have P(B(pk, E(pk,m)) = m) = 1

#M + ε where
ε > 0 is negligible.

From the probability independence between the DP-mechanism Q and the
encryption scheme (G,E,D) we have

1

#M
+ δ = P(A(m) = m) = P(B(m) = m | Q(m) = m)

= P(B(m) = m) P(Q(m) = m)

≤ P(B(m) = m) =
1

#M
+ ε

Absurd. So there exists an adversary B with non-negligible advantage.2

ut

5 Example of an αm1,m2-Correct Homomorphic
Encryption Scheme

In this section, we introduce a variation of the Dijk’s et al. public key integer
homomorphic encryption scheme [2] by only introducing a new parameter ξ that
will be used to increase the noisy randomness of the encryption scheme. Then, we
show how to compute the probabilities αm1,m2

that will prove that the scheme
is αm1,m2

-correct. At the end, we show the connection between the original and
the modified scheme and prove the security-hardness of the modified one.

Definition 9 (Variation of the Dijk et al. public key homomorphic en-
cryption scheme). Let M = {0, 1} and let γ, η, ρ, τ be the four parameters
defined in the original scheme such that all the security constraints hold. Let ξ
be an additional parameter required for the variation.
Let (G,E,D) be defined as:

– G(1λ) : randomly pick p ∈ [2η−1, 2η) and p odd.
For the public key, for all i ∈ 0..τ sample

xi ∈ Dγ,ρ(p) =

{
pq + r : q ∈ U

(
Z ∩

[
0,

2γ

p

))
, r ∈ U(Z ∩ (−2ρ, 2ρ))

}
and relabel so that x0 is the greatest. Restart until x0 is odd and (x0 (mod p)) ∈(
−p2 ,

p
2

]
is even.

Define pk := {x0, . . . , xτ} as the public key and sk := p as the secret key.
– E(pk,m): choose at random S ⊆ [1, τ ] and a random integer r ∈ (−2ρ

′+ξ, 2ρ
′+ξ).

The difference with respect to the original scheme is that ξ is present in the
interval-bounds exponents. Output the ciphertext c =

(
m+ 2r + 2

∑
i∈S xi

)
(mod x0)

2 Take for example adversary A.
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– D(p, c): output (c (mod p)) (mod 2)

In order to prove that the scheme achieves some α-correctness with α 6= 1,
fix a random S and observe that

m+ 2r + 2
∑
i∈S

xi = m+ 2r + 2
∑
i∈S

pqi + ri

= m+ 2

(
r +

∑
i∈S

ri

)
+ p · 2

∑
i∈S

qi = m+ 2R+ pQ

where Q ∈ Z and R will be contained in a subset of the integers

AS :=
(
−(#S · 2ρ + 2ρ

′+ξ), (#S · 2ρ + 2ρ
′+ξ)

)
⊆ Z

For this reason, for a fixed S, we can reduce the computation of αm,m as a
combinatorial problem:

α :=
#
{
r : r ∈

(
−2ρ

′+ξ, 2ρ
′+ξ
)
|
∣∣2 (r +

∑
i∈S ri

)∣∣ < p
2

}
#S · 2ρ+1 + 2ρ′+ξ+1

For the right parameter ξ, we can obtain that the encryption scheme is an
αm,m-correct encryption scheme.

Remark 6. It is important to notice that using a different S will change the
probability αm,m. You can think of it as using a different public key for the
encryption algorithm.

Consider a fixed S and the function bxe = closest integer to x. We can com-
pute ∆ = 2 ·

∑
i∈S ri and if we consider ξ̃ as the bound for the noise r, we can

define the function

F (ξ̃, ∆) =

∫ ξ̃+∆

−ξ̃+∆

⌊
x

p

⌉
(mod 2) dx

2 · ξ̃
∈ [0, 1]

that represents the correctness probability. We have the trivial properties

F (ξ̃, 0) =
1

2
lim
ξ̃→∞

F (ξ̃, ∆) =
1

2
(4)

In order to prove that our modified scheme is secure, we reduce the security-
hardness of our scheme to the security of the original Dijk et al.’s encryption
scheme. From the Proposition (4) on the class equality between Encrypt+DP
and DP-then-Encrypt we will transform our modified scheme into the Dijk et
al.’s encryption scheme in the DP-then-Encrypt class.
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Remark 7. We can observe that r is randomly picked from
(
−2ρ

′+ξ, 2ρ
′+ξ
)

. We

will now consider a random r′ ∈ (−2ρ
′
, 2ρ

′
) and rewrite r = r′ + r̂ for some

r̂ ∈ Z. At this point, we can rewrite the general encrypted message as

m+ 2r + 2
∑
i∈S

xi = m+ 2(r′ + r̂) + 2
∑
i∈S

xi = (m+ 2r̂) + 2r′ + 2
∑
i∈S

xi (5)

where r′ and xi are regular values from the original encryption scheme. During
the decryption phase, we will obtain:

(
m+ 2r + 2

∑
i∈S

xi

)
(mod p) (mod 2) =

Equation (5) =

(
(m+ 2r̂) +

(
2r′ + 2

∑
i∈S

xi

))
(mod p) (mod 2)

Original scheme’s values = (m+ 2r̂) (mod p) (mod 2)

= m⊕ (2r̂ (mod p) (mod 2))

From this equality, the message m can be decrypted in a different message
m̂ just by looking at the value r̂.

This is exactly a DP-then-Encrypt scheme, where we can define a probability
permutation π as in Definition (7) with P(π(m1) = m2) = αm1,m2

and the
original Dijk’s encryption scheme.

Remark 8. As in the Remark (6), changing S will change the probability permu-
tation π since the probability α will change. For this reason, the random subset
S, the probability permutation π, the probability α and the new parameter ξ
are dependent one from the others.

Proposition 5. Given an αm,m-correct public key modified Dijk et al. ’s en-
cryption scheme with fixed parameters (ρ, ρ′, η, γ, τ, ξ).
Any adversary A with non-negligible advantage ε on the αm,m-correct encryption
scheme can be converted into an adversary B with non-negligible advantage ε on
the original Dijk et al.’s encryption scheme with parameter (ρ, ρ′, η, γ, τ).

Proof. Follows from Lemma (1). ut

5.1 Implementation and Statistics

In order to empirically study the dependency between the parameters ξ, α and
ε, we implemented the modified Dijk et al. ’s encryption scheme of Section 5 in
Sage. Considering λ = 10 as a general security parameter, we started from the
scheme with parameters:

ρ = λ ρ′ = 2 · λ η = λ2 γ = λ5 τ = λ ξ = 0
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and then we consider the k-th variation where we add a factor of ξ̃k = k·p
10 to

the noise interval 2ρ
′

+ ξ̃k. In Figure 3a and Figure 3b, we have the measured
value for α and ε with respect to k. For every k ∈ [1, 30], we tested λ different
choice of S, we executed N = 100 experiments and retrieved an empirical value

for α. In order to obtain the ε, we just took the ε = sup
{

α
1−α ,

1−α
α

}
. We tested

different random keys S and the empirical difference between the plots is barely
visible, but it can easily be described as a “really small translation of the plot
to the left or right”. In the chosen key used for the test, if we want to have a
α = 0.8 correctness probability, we have to use ξ̃4 = 2·p

5 and the scheme will
have ε = 1.38 -DP.

(a) Different α with respect to ξ̃k (b) Different ε with respect to ξ̃k

Figure 3: Empirical measurements of α and ε from the implementation.

6 Conclusions & Future Work

This paper bridges concepts in cryptography and differential privacy and we pro-
pose the first differentially private encryption scheme. More precisely, we show
how to constructively combine differential privacy with an encryption framework
in a single scheme, contained in the Encrypt+DP class, and vice versa. This con-
struction is not limited to homomorphic encryption schemes and can be used
in order to define an encryption scheme that can guarantee both privacy and
confidentiality.

So far we have only examined this link in an abstract way. An open question
is the trade-off between αm1,m2

-correctness and ε(αm1,m2
)-DP for specific ho-

momorphic operations, with a particular attention to the bootstrap procedure.
This might lead to interesting practical applications, such as faster, α-correct
homomorphic encryption schemes with differential privacy guarantees.
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