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Abstract Pseudo-random functions are a useful cryptographic primi-
tive that, can be combined with zero-knowledge proof systems in order
to achieve privacy-preserving identification. Libert et al. (ASIACRYPT
2017) has investigated the problem of proving the correct evaluation of
lattice-based PRFs based on the Learning-With-Rounding (LWR) prob-
lem. In this paper, we go beyond lattice-based assumptions and inves-
tigate, whether we can solve the question of proving the correct evalu-
ation of PRFs based on code-based assumptions such as the Syndrome
Decoding problem. The answer is affirmative and we achieve it by firstly
introducing a very efficient code-based PRG based on the Regular Syn-
drome Decoding problem and subsequently, we give a direct construction
of a code-based PRF. Thirdly, we provide a zero-knowledge protocol for
the correct evaluation of a code-based PRF, which allows a prover to
convince a verifier that a given output y is indeed computed from the
code-based PRF with a secret key k on an input x, i.e., y = f(k, x).
Finally, we analytically evaluate the protocol’s communication costs.

Keywords: Coding Theory, Zero Knowledge, Pseudorandom Function,
PRF Argument, Syndrome Decoding

1 Intro

Pseudo-random functions (PRFs) is a fundamental cryptographic primitive that
can be employed to authenticate users, since they generate unique pseudorandom
numbers. Zero-knowledge (ZK) proofs are often used to enforce honest behaviour
or prove the identity of users, while providing strong privacy guarantees. By
combining pseudo-random functions with zero-knowledge proofs, it is possible to
achieve privacy-preserving user identification and answer the following question:

How may a prover P prove to a verifier V, the correct evaluation of a PRF
function f(k, x) = y, without leaking any information about k?

This is a rather important question with multiple applications, e.g., e-cash,
unique digital signatures, non-interactive lottery and more. Although algebraic
(based on number-theoretic hardness assumptions) pseudo-random functions
and zero-knowledge proofs, are well studied primitives; there has been compara-
tively “less progress” on these primitives based on post-quantum cryptographic
assumptions such as code-based, hash-based, and multivariate-based.



Libert et al. [19] has recently addressed this problem based on lattice-based
assumptions and more precisely, based on the Learning-With-Rounding (LWR)
problem [4] and provide a lattice-based zero-knowledge PRF argument.

Code-based cryptography enables the construction of cryptographic primi-
tives that are believed to be secure against an adversary who has at his disposal
a quantum computer. More precisely, code-based cryptographic primitives are
based on assumptions related to the hardness of the Syndrome Decoding (SD)
problem [5], that has been proved to be NP-hard. Furthermore, except of their
post-quantum nature, code-based cryptographic primitives offer significant ad-
vantages due to their significant algorithmic efficiency, offering several orders of
complexity better than traditional cryptographic schemes.

In this paper, we focus on the construction of code-based cryptographic
fundamental primitives, particularly on code-based pseudo-random generators/-
functions, as well as on code-based interactive zero-knowledge proof systems.
We firstly introduce a code-based PRG and subsequently, we provide a direct
construction of a code-based PRF. Finally, we provide a zero-knowledge proto-
col for the correct evaluation of the proposed code-based PRF and evaluate the
protocol’s communication cost.

Syndrome Decoding (SD). In this paper, we base our post-quantum cryp-
tosystems on the hardness of the Syndrome Decoding (SD) problem [5], which
is a commonly used assumption in code-based cryptography. Recall that the SD
problem with parameters n, r, ω is stated as follows: given a uniformly random
matrixH ∈ Fr×n2 and a uniformly random syndrome y ∈ Fr2, find a vector (word)
x ∈ Fn2 with Hamming weight ω, such that H · xᵀ = yᵀ. Berlekamp, McEliece
and Tilborg [5] proved that the SD problem is NP-complete, which implies that
there is no polynomial-time algorithm for solving the SD problem in the worst
case; however, many instances of the SD problem can be efficiently solved in the
average case. Given existing results on the computing complexity for solving the
SD problem (as reviewed by Chabaud and Stern [9,23]) it is the hardest to solve,
when the weights of the words (i.e., x ∈ Fn2 ) are in the neighbourhood of the
Gilbert-Varshamov bound [14,24]. More precisely, we can set the weight of the
words for an instance of the SD problem close to the Gilbert-Varshamov bound,
such that the corresponding SD hardness assumption holds.

Considering the expensive computations required to transform binary strings
into words of constant weight and length, the Regular Syndrome Decoding (RSD)
[3], is a special case of the SD problem, where the words are restricted to regular
words. Regular words are words of given weight w, that have a fixed number of
1’s in each block of fixed size. The Regular Syndrome Decoding (RSD) problem
is widely used in practical applications due to its high efficiency and convenience
in generating words. For instance, Gaborit, Lauradoux, and Sendriern [13] used
regular words to improve Fischer and Stern’s code-based PRG [12]. Let us con-
sider binary words of length n and let us divide the coordinates in w blocks of
n/w positions. A binary regular word of length n and weight w ((n,w)-regular
word) has exactly one non-zero coordinate in each of these blocks. Notice that
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there is a reduction from the RSD to the SD problem, which implies that de-
coding a regular code cannot be more than about exp(w) easier than decoding
a random code of the same weight.

Code-based Pseudo-random Generators/Functions. Fischer and Stern [12]
proposed a simple and efficient construction of a pseudo-random generator (PRG),
based on the intractability assumption for a special case of the SD problem,

where H ∈ Fbρnc×n2 , x ∈ Fn2 , ω = bδnc for some ρ ∈ [0, 1] and δ ∈ [0, 1/2] such
that the Gilbert-Warshamov bound denoted by Bound(δ) satisfies the following
condition: Bound(δ) = −δ log2 δ − (1− δ) log2(1− δ) < ρ. Thus, yielding a PRG

Gρ,δ(x) = H · xᵀ with domain Fn2 and range Fbρnc2 . In order to obtain a PRG
that outputs as many bits as we may want, Fischer and Stern [12] provided an
iterative generator, which after computing y = H ·xᵀ, separates y as y = y1‖y2,
where y1 denotes the first log2

(
n
δn

)
bits of y and y2 denotes the remaining bits.

It outputs y2 and uses y1 as a new seed to compute Gρ,δ. We should note, that
when performing this iteration, it is indispensable to have an efficient algorithm
that computes a word with length n and weight ω = bδnc from a word of exactly
log2

(
n
ω

)
bits.

A pseudo-random function (PRF) is a function fk with the property that
no polynomial-time attacker, when given oracle access to fk, can distinguish fk
from a truly random function. Goldreich, Goldwasser, and Micali [16] have shown
how to generically construct a PRF from any length-doubling PRG (hence from
any one-way function), known as the GGM paradigm, which requires n sequen-
tial invocations of the generator when operating on n-bit inputs. By plugging
Fischer and Stern’s code-based iterative PRG [12] into the sequential GGM
paradigm [16], we are able to obtain a code-based PRF. However, the PRF
generated with this method is maximally sequential and very inefficient, since
Fischer-Stern’s PRG [12] uses a quadratic algorithm to transform binary strings
of length log2

(
n
ω

)
into words with length n and weight ω, while this algorithm has

to be executed whenever the PRG evaluation is invoked in the GGM paradigm;
thus, considerably slowing down the whole process. This motivates us to explore
specialized constructions of PRFs under code-based assumptions that are much
more efficient, than the previously described naive solution.

Zero-knowledge Proofs for the Correct computation of Code-based
PRFs. Employing a PRF as a random oracle is limited to the setting where
the “key owner”, i.e. the party that evaluates the PRF, should be fully trusted.
Motivated by the fact that the key should remain private in this setting, we
wish to establish a method that allows the owner of the key to prove to a verifier
that the given value y is indeed the correct evaluation on an input point x,
without revealing the key. Zero-knowledge (ZK) proof systems are very useful
in numerous protocols, where a user has to prove knowledge of some secret
information (e.g., his identity), without revealing this information. Constructing
a ZK protocol for the correct evaluation of a code-based PRF is quite challenging.
There have been proposed ZK identification schemes [22] based on the hardness
of the SD problem and its variants [8,2], as well as identity-based identification
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schemes [7,10]. There have also been proposed ZK proofs of plaintext knowledge
based on the McEliece and the Niederreiter cryptosystems [17], as well as a ZK
protocol in order to demonstrate that a given signature is generated by a certain
certified user of a group, who honestly encrypts its identifying information [11].
Yet, we are not aware of any ZK protocol that can be employed to prove the
correct evaluation of a code-based PRF.

Our Contribution. In this paper, we give a direct construction of PRF families
based on coding theory, which is provably secure under code-based assumptions.
More precisely, we take advantage of regular words, which can be very efficiently
generated, and we build a new PRG by running two Fischer-Stern PRGs in par-
allel. Thus, avoiding the iteration needed in the Fischer-Stern PRG in order to
output a bit string with doubled length. In this way, we obtain an efficient con-
struction of PRF families from the regular syndrome decoding (RSD) problem [3].

Secondly, we provide a zero-knowledge protocol for the correct evaluation of
our code-based PRF, which allows a prover to convince a verifier that a given
output y is indeed correctly computed from the code-based PRF with a secret
key k held by the prover on the input x. Such ZK protocols may be very useful
in the context of oblivious PRF evaluations, which require the party who holds a
PRF key to convince the other party that the key was correctly used in oblivious
computations (e.g., e-cash, unique digital signatures, non-interactive lottery). It
is worth noting that, to the best of our knowledge, prior to our work there were
few papers considering PRGs based on syndrome decoding [12,13,21] or other
code-based assumptions [25], while no paper considers PRFs based on the SD
assumption, let alone considering the problem of proving the correct evaluation
of a code-based PRF. We believe that our results would certainly help to bring
more interest into code-based cryptography and enhance its important roles in
the post-quantum cryptography era.

Overview of Our Techniques. Let us consider an (n,w)-regular word of
length n and weight w. We divide the coordinates in w blocks of n/w positions,
and a (n,w)-regular word has exactly one non-zero coordinate in each of these
blocks. If n and w are chosen such that n/w = 2b, then there is a mapping φn,w
from Fwb2 to the (n,w)- regular words in Fn2 .

Let H0,H1 ∈ Fr×n2 where r = w · b and n = w · 2b and f : Fr2 → F2r
2 as:

f(k) =

(
H0

H1

)
· φ(k)

ᵀ
=

(
H0 · φ(k)

ᵀ

H1 · φ(k)
ᵀ

)
= (y0,y1)

ᵀ

For an input bit string x ∈ Ft2 and by applying the GGM paradigm, we can
therefore define a code-based PRF as follows PRF : Fr2 × Ft2 → Fr2, where:

PRFk(x) = PRFk

(
(x1, · · · , xt)

)
= fxt(fxt−1(· · · (fx1(k)) · · · ).

The pseudo-randomness of our code-based PRF could be reduced to the hard-
ness of the underlying regular syndrome decoding (RSD) problem and the unpre-
dictability of the Goldreich-Levin hardcore bit, similarly to [21].
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Let us now explain the core idea of how we may build a zero-knowledge
protocol for the correct evaluation of our proposed code-based PRF, which allows
a prover to convince a verifier that a given output y is correctly computed from
the PRF using a secret key k on input x, namely y = fxt(fxt−1(· · · (fx1(k)) · · · ).
Without loss of generality, let us consider the case for input length of t = 2.
Given x = (x1, x2), according to our PRF construction, it holds:(

Hx1 0
0 Hx2

)(
φ(k)

ᵀ

φ(fx1
(k))

ᵀ

)
=

(
fx1(k)

ᵀ

fx2
(fx1

(k))
ᵀ

)
If we reveal all the intermediate results, i.e., the value y1 = fx1

(k) which
is exactly the seed used to compute the next GGM iteration i.e., the value
y = y2 = fx2

(y1), then it is possible for a malicious verifier to compute the
PRF on different inputs x′ = (x1, 1 − x2) (without knowing the secret key k),
which subsequently could be used to break the pseudo-randomness of the PRF.
Therefore, we have to “hide” the intermediate evaluations while proving the
correctness of the PRF evaluation. This goal is accomplished by introducing a

specific map φ−1 that can be used to hide all the intermediate evaluation results
while maintaining the Stern’s protocol format. Formally, we obtain:(

Hx1
φ−1

0 Hx2

)
·
(
φ(k)

ᵀ

φ(y1)
ᵀ

)
=

(
0
yᵀ

)
By embedding the above technique into Stern’s ZK protocol framework [22],

we obtain an interactive ZK argument system, in which, given the input and
output values x,y,the prover is able to prove that y = PRFk(x) is indeed the
evaluation of fxt(fxt−1(· · · (fx1(k)) · · · ). The protocol is repeated many times to
achieve negligible soundness error.

Related Work. Libert et al. [19] have investigated the problem of correctly
evaluating arguments for lattice-based pseudo-random functions w.r.t. commit-
ted keys and inputs, using (interactive) zero-knowledge proofs; this is achieved
by providing an abstraction of Stern’s protocol [22] based on lattices. Brunetta
et al. [6] further investigated the possibility of using Libert et al.’s results in or-
der to construct more advanced primitives such as simulatable verifiable random
functions (sVRF). However the following question is left open:

“Is it possible to achieve a ZK PRF argument based on other (non
lattice-based) post-quantum assumptions?”

Motivated and inspired by these works, we show that it is indeed possible
to construct PRF families based on coding theory assumptions and that it is
possible to use the original Stern’s protocol to achieve the ZK argument.

Goldreich-Goldwasser-Micali Construction. In 1986, Goldreich, Goldwasser
and Micali [16] proposed a generic transformation from any PRGs that doubles
the input length, into a family of PRFs. This elegant construction is the main
core of our PRF and the reason of our main interest in code-based PRGs.
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Code-based PRGs and Stream Ciphers. In 1996, Fischer-Stern [12] defined
a simple PRG based on the syndrome decoding (SD) problem. A decade later,
Gaborit et al. published a code-based stream cipher called SYND [13], which is
an improvement of Fischer-Stern’s PRG, revisited as a stream-cipher. Meziani
et al. proposed 2SC [20], a code-based sponge-function stream cipher. Shortly
after, Meziani et al. improved the SYND cipher and defined X-SYND [21], which
is a stream-cipher based on the regular syndrome decoding (RSD) problem and
of which we get inspiration for our constructions.

Stern’s Protocol. In 1996, Stern [22] published a code-based identification
protocol with a zero-knowledge property. Different improved versions are defined
by Aguilar et al. [2] or Cayrel et al. [8] in order to reduce the soundness error. In
our constructions, we have employed the original zero-knowledge identification
protocol proposed by Stern [22] , given the simplicity of the construction and its
generality.

Paper organisation. In Section 2, the paper notation and the minimal coding-
theory background is reported. In Section 3, we present our code-based PRG con-
struction and by applying the GGM transformation, we obtain our code-based
PRF. In Section 4, we describe our PRF proof argument that is compatible with
the Stern’s protocol statements and, by applying Stern’s protocol, we achieve a
code-based ZK PRF argument. In Section 5, we describe an application scenario
for our protocol and we discuss the protocol’s communication cost. Finally, in
Section 6, we summarize our results and point out to possible future directions.

2 Preliminaries

This section provides the minimal coding theory definitions needed and the no-
tation used in the paper. We will recall some coding hard problems and we will
conclude the section by reporting Stern’s zero-knowledge identification proto-
col [22].

Let N be the set of positive integers and let the uniform sampling of x in a set
X defined as x∈$X. Let us denote with |x| the length of the bit-representation
of x. We denote with I2Bb(n) the map that takes an integer value n and outputs
the b-bit binary representation x ∈ Fb2. We denote with B2I(x) the map that
takes a binary string x and outputs the corresponding integer value n.

A linear code C of an n-dimensional vector space over a finite field Fq is
a k dimensional subspace where q is a prime power, k and n are integers and
0 < k < n. The elements y ∈ Fnq are called words and, if they are part of
the code, i.e. y ∈ C, then, they are called codewords. The weight of a word
x is denoted as wt(x) and it counts the number of non-zero components of
the word x. A code C can be represented by a generator matrix G ∈ Fk×nq as

C = {x · G | x ∈ Fkq}, where k is the number of rows and n the number of
columns and the multiplication · is the standard matrix multiplication.

Given the vector subspace description of the code C, the dual-code C⊥ is

generated by a parity check matrix H ∈ F(n−k)×n
q . For the matrix H, it holds
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C = {x ∈ Fnq | H · xᵀ = 0}. Throughout the paper, we will consider only
binary codes, i.e. q = 2, and therefore, we use ⊕ to represent the bit-wise XOR
operation.

Let us consider the integers n, k, r ∈ N and the parity check matrixH ∈ Fr×n2

of the code C of dimension k over Fn2 , in which we consider r = n− k.

Assumption 1 (Binary Syndrome Decoding (SD)) Given a binary matrix
H ∈ Fr×n2 , a binary vector y ∈ Fr2 and an integer w > 0, find a word x ∈ Fn2
such that wt(x) = w and H · xᵀ = y.

The SD problem is known to be NP-complete [5]. We are interested in a
simplified version of the SD problem in which the word x is regular, i.e. for x
with weight w, it can be split into w equal-blocks of length n

w and each of them
has a single non-zero entry.

Assumption 2 (Regular Syndrome Decoding (RSD(n, r, w))) Given a bi-
nary matrix H ∈ Fr×n2 , a binary vector y ∈ Fr2 and an integer w > 0, find a
regular word x ∈ Fn2 such that wt(x) = w and H · xᵀ = y.

Augot et al. [3] prove the NP-completeness of the RSD problem and we will
base the security of our constructions on this specific problem.

Stern’s protocol [22] is a zero-knowledge sigma-protocol that describes the
language L defined as the elements (M ,y) ∈ Fr×n2 × Fr2 of which there exists a
witness s ∈ Fn2 , such that wt(s) = w and M · s = y. Stern’s protocol requires
a commitment scheme Com and allows a prover P to prove to a verifier V the
knowledge of the witness vector s given the statement (M ,y).

Theorem 1 (Stern’s protocol). From the original paper [22], Stern’s pro-
tocol, as reported in Figure 1, is correct, has soundness probability of 2

3 and it
is zero-knowledge. Let π a permutation of the set {1, . . . , n} if we assume that
|π| > n, and |Com| is the commitment length, then the communication cost of
the protocol is:

CostStern(n, r) ≤
(

3 · |Com|︸ ︷︷ ︸
Commitment

+

Challenge︷︸︸︷
2 +n+ |π|+ |ρ0|+ max

i∈{1,2}
|ρi|︸ ︷︷ ︸

Response

)
bits

3 Code-Based PRF

In this section, inspired by Gaborit’s [13] and Meziani’s [21] code-based stream
ciphers, we define our own simple PRG f that has double-length pseudoran-
dom output. Furthermore, after proving that f is indeed a PRG, we present
our code-based PRF obtained by employing the Goldreich-Goldwasser-Micali
(GGM) transformation [16].
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Statement: (M ,y) ∈ Fr×n2 × Fr2 and witness s ∈ Fn2 with wt(s) = w and M · s = y.

1. Commitment: P samples r∈$Fn2 , a permutation π of the set {1, . . . , n} and
random values ρ0, ρ1, ρ2 for the commitment scheme Com. The result of applying
the permutation π to a vector r = (r1, . . . , rn) is π(r) = (rπ(1), . . . , rπ(n)).
The prover P sends the following commitments to the verifier V:

C0 = Com((π,M · rᵀ) ; ρ0) C1 = Com(π(r) ; ρ1) C2 = Com(π(r ⊕ s) ; ρ2)

2. Challenge: V sends the challenge c ∈ {0, 1, 2} to P
3. Response: P sends to V, based on the challenge c, the reply: if c = 0, (π(r), π(s))

and ρ1, ρ2; if c = 1, (r ⊕ s, π) and ρ0, ρ2; and if c = 2, (r, π) and ρ0, ρ1.

Verification: given the challenge c and the response (r̃, π̃), V verifies:

if c = 0: given ρ1, ρ2, V checks wt(π̃)
?
= w, Com(r̃ ; ρ1)

?
= C1 and Com(r̃⊕π̃ ; ρ2)

?
= C2

if c = 1: given ρ0, ρ2, V checks Com((π̃,M ·r̃ᵀ⊕yᵀ; ρ0)
?
= C0 and Com(π̃(r̃); ρ2)

?
= C2

if c = 2: given ρ0, ρ1, V checks Com((π̃,M · r̃ᵀ ; ρ0)
?
= C0 and Com(π̃(r̃) ; ρ1)

?
= C1

In each case, V outputs 1 if and only if all the checks are correct.

Figure 1. Stern’s protocol description.

Let w, b ∈ N positive integers chosen such that n = 2bw, r = w · b, and the
related RSD problem RSD(n, r, w) of Assumption 2 is hard. Consider the binary
words s ∈ Fn2 of length n and composed by w blocks of length 2b, i.e. s =(
s1, . . . , sw

)
such that every block sj has weigth wt(sj) = 1. We are interested

in maps that have binary regular words as image.

Let us define the map φ as the map that takes a bit-string y ∈ Fr2 and outputs
a regular word s ∈ Fn2 such that wt(s) = w and that is computed as follows.

Firstly, the binary string y is divided into w blocks as y = (y1, . . . ,yw)
of which each block yi is a binary string with length b. Then, for every j ∈
{1, . . . , t}, we compute the integer value nj represented by the block yj and
denote it as B2I(yj) = nj . In this way, we transform the vector (y1, . . . ,yw)
into a vector of integers (n1, · · · , nw), where every nj is contained in the interval
{0, . . . , 2b − 1}. Since there are 2b possible values for nj , we bijectively identify
every integer with a canonical vector of length 2b. This bijection takes as input

an integer nj and outputs the canonical vector enj+1 ∈ F2b

2 , which is the binary
vector of length 2b, with a single 1 in position nj + 1.

Finally, we transform the integer vector and obtain a vector of canonical
vectors (en1+1, · · · , enw+1) that are concatenated and output by φ. In summary,
the map φ is computed as:

φ
(
y
)

= φ
(
(y1, . . . ,yw)

)
=
(
eB2I(y1)+1‖ · · · ‖eB2I(yw)+1

)
= s

It is trivial to observe that s is a regular word of length n and weigth w since
s is the concatenation of w canonical vectors of length 2b and the weight wt(s)
is equivalent to the sum of the weight of the canonical vectors, which is w. It is
important to note, that φ can be efficiently computed and therefore, we assume
that the computational cost is constant.
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For example, the vector y =
(
01‖11‖00

)
would be transformed into the

regular word φ(y) = s =
(
e2‖e4‖e1

)
=
(
0100‖0001‖1000

)
.

After defining the map φ, we are interested in developing a pseudorandom
generator (PRG) based on the RSD assumption (see Assumption 2), inspired by
Meziani’s [21] stream-cipher design. Let us first report both definitions.

Definition 1 (Pseudorandom Generator (PRG) [18]). Given the positive
integers `in, `out ∈ N with `out > `in, let G : {0, 1}`in → {0, 1}`out be a deterministic
function. We say that G is a pseudorandom generator if the following two
distributions are computationally indistinguishable:

– Sample a random seed s ∈ {0, 1}`in and output G(s).
– Sample a random string r ∈ {0, 1}`out and output r.

A stream cipher is an encryption scheme used in contexts where the messages
are streams, i.e. the messages do not have a fixed-length a priori, and therefore a
key-“stream” has to be generated and used. In order to do so, stream-ciphers are
usually designed with an initialization algorithm that takes a key and initialize
the cipher into an internal state. Consecutively, the cipher has an output al-
gorithm that outputs a fixed-length key-stream based on the internal state and
an update algorithm that “evolves” the internal state.

As described also by Fischer-Stern [12], it is natural to build stream-ciphers
from PRGs: the stream cipher key is indeed the initial PRG’s seed s. Then, we
can compute G(s) and use the first `in bits as the internal state and the remaining
`out− `in as the key-stream output. By iterating the PRG computation using the
always different internal state, we obtain an arbitrary long key-stream.

Given the strong connection between stream ciphers and PRGs, we focus on
Meziani et al.’s [21] code-based stream cipher, depicted in Figure 2.

Definition 2 (X-SYND Stream Cipher [21]). Let w, b ∈ N be positive inte-
gers and define n = w2b, r = wb. Let A0,A1 ∈$Fr×n2 be random binary matrices.
Define the X-SYND stream cipher as:

– Init(IV, s): given an initialization vector IV and a seed s both of length r
2 , let

zᵀ = A0 ·φ
(

(s‖IV)
)ᵀ⊕(s‖IV)

ᵀ
and set as initial state st0

ᵀ = A1 ·φ(z)
ᵀ⊕zᵀ;

– Upd(sti): given the internal state sti, update the state sti+1
ᵀ = A0 · φ(sti)

ᵀ
;

– Out(sti): given the state sti, output the key-stream ki+1
ᵀ = A1 · φ(sti)

ᵀ

Similarly to X-SYND, let A0,A1 ∈ Fr×n2 , where r = w · b and n = w · 2b and
the map φ : Fr2 → Fn2 as before. Let us define the function f : Fr2 → F2r

2 as:

f(k) =

(
A0

A1

)
· φ(k)

ᵀ
=

(
A0 · φ(k)

ᵀ

A1 · φ(k)
ᵀ

)
=

(
y0

y1

)
(1)

It has to be observed that f is indeed Meziani et al.’s [21] computation of
the initialization and update algorithms, i.e. f(sti)

ᵀ
= (Upd(sti)

ᵀ‖Out(sti)ᵀ).
This observation allows us to reuse Meziani et al. X-SYND proofs and easily

prove that f is indeed a PRG.
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(s‖IV)

Init(IV, s)

Upd z Out sti
Upd

Out ki+1

Figure 2. A high-level representation of the X-SYND stream cipher.

Proposition 1. f is a PRG that reduce to a RSD(n, 2r, w) problem (Assum. 2).

Proof. We sketch the main idea of the proof in two parts, that follow the same
reasoning as Meziani et al.’s [21] X-SYND’s security proof parts.

We start by observing that since φ is a bijection between vectors in Fr2 and
regular words in Fn2 with weight w, it is obvious that knowing a regular word
solution x is equivalent of knowing the vector k such that φ(k) = x.

Given this observation, in fact, we have an RSD(n, 2r, w) instance since:

f(k)
ᵀ

=

(
A0

A1

)
· φ(k)

ᵀ
=

(
A0

A1

)
· xᵀ ∈ RSD(n, 2r, w)

The second step is pseudorandomness and to prove it, we use the fact that
Meziani et al. prove in Theorem 2 [21], using Goldreich-Levin hard-core bit
theorem [15], that the map (Upd,Out) is a PRG. Given the observation that
(Upd,Out) is exactly f , we can conclude that f is indeed a PRG. ut

From PRG to PRF. Finally, we use our PRG f and construct a PRF.
In order to do so, we use the Goldreich-Goldwasser-Micali construction [16]. For
the sake of clarity, let us report the PRF definition and the GGM construction.

Definition 3 (Pseudorandom Function (PRF)). Let S be a distribution
over {0, 1}` and Fs : {0, 1}m → {0, 1}n be a family of functions indexed by
strings s in the support of S.

We say {Fs} is a pseudorandom function family if for every p.p.t. adversary
D, there exists a negligible function ε such that:

|Pr[DFs(·) = 1]− Pr[DR(·) = 1]| ≤ ε,

where s is distributed according to S, and R is a function sampled uniformly at
random from the set of all functions from {0, 1}m to {0, 1}n.

Definition 4 (GGM Construction [16]). Let G : {0, 1}` → {0, 1}2` be a
length-doubling PRG and s ∈ {0, 1}` be a seed for G. Write G(s) = (G0(s), G1(s))
with G0,G1 : {0, 1}` → {0, 1}`. Then, on input x ∈ {0, 1}m, we define the GGM
pseudorandom function Fs : {0, 1}m → {0, 1}n as

Fs
(
x
)

= Fs
(
(x1, . . . , x`)

)
= Gx`

(Gx`−1
(· · · (Gx1(s)) · · · ) (2)
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Theorem 2. If G : {0, 1}` → {0, 1}2` is a PRG, then {Fs} is a PRF family.

Having fixed a positive non-null integer t ∈ N, let us define our PRF PRF :
Fr2 × Ft2 → Fr2 as the PRF obtained by transforming our PRG f of Eq. (1) with
the GGM construction of Eq. (2). For readability, we will always denote the key
in subscript, i.e. PRF(k,x) = PRFk(x). Formally we have,

PRFk(x) = PRFk

(
(x1, · · · , xt)

)
= fxt

(
fxt−1

(
· · ·
(
fx1

(k)
))
· · ·
)

(3)

Corollary 1. By Theorem 2, PRF is a code-based PRF.

4 Code-Based Zero Knowledge PRF Argument

In this section, we describe how our PRF construction can be adapted to be
compatible with Stern’s protocol [22] and thus, achieve a Zero-Knowledge (ZK)
PRF argument, i.e. can be employed to prove the correctness of a PRF evalua-
tion. We will start from a näıve description of a Stern-like statement and explain
a specific security-flow that seems not to be easily solvable. To solve the problem,
we define the map ψ that will act as the inverse map φ−1 and modify accordingly
the statement in order to obtain a secure Stern-like statement

(
(M ,y), s

)
.

Briefly, Stern’s protocol allows a prover P to prove the knowledge of a witness
s with weight w to a verifier V, that holds a public statement

(
M ,y

)
. The

statement and the witness are related to the equation M · sᵀ = yᵀ.

At a first glance, we can observe that our PRG f is already defined in a
Stern-like format but iterating the PRG requires the application of the map φ,
which has no possible linear representation. Let us consider the GGM iterative
structure and let yi be the i-th partial evaluation of the PRF, while xi+1 be the
next “branching” in the GGM construction. The (i+ 1)-th partial evaluation is
computed as Ax(i+1)

· φ(yi)
ᵀ

= y(i+1)ᵀ. Since φ has no-linear representation, it

is indeed impossible to re-write the equation as a single matrix M ∈ Fr×n2 that
multiplies only the secret initial vector φ(k).

It is important to note that, in order to use Stern’s protocol, the witness is
required to have a specific weight w and therefore we will consider as witness the
regular word φ(k). This observation allows us to rewrite the PRF evaluation as
a system of equations that describe all the singular partial evaluations and can
be directly used to run Stern’s protocol. Let k = y0 and x = (x1, . . . , xt) and
yt = PRF(k,x). Then, it formally holds that:


Ax1 · φ(y0)

ᵀ
= y1ᵀ

Ax2
· φ(y1)

ᵀ
= y2ᵀ

. . .

Axt
· φ(yt−1)

ᵀ
= yt

ᵀ

⇐⇒


Ax1 0

0 Ax2
0

. . .
. . .

. . .

0 Axt

 ·


φ(y0)
ᵀ

φ(y1)
ᵀ

...
φ(yt−1)

ᵀ

 =


y1ᵀ

y2ᵀ

...
yt

ᵀ


(4)
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Unfortunately, this representation has a security-flaw that allows a mali-
cious adversary A to compute the PRF on different inputs x′ without requiring
the knowledge of k. This flaw is not captured by the GGM transformation and
Stern’s protocol security model, since the problem is related to the “composition”
of the construction and the unusual behaviour observed when näıvely merging
the security models. We call this composed-protocol as prove-on-demand pro-
tocol, in which we can either solely compute the PRF and, in a different moment
in time, request to execute the ZK arguments. Further discussion is presented
in Section 5.

In a nutshell, let A be an adversary whose goal is to distinguish between
our code-based PRF PRF and a random function ζ, i.e., break the pseudo/ran-
domness property and related security model. Whenever the adversary queries
a value x, A can either ask to obtain just the value PRF(k,x) or to obtain the
transcript of the execution of Stern’s protocol, which contains PRF(k,x) too.
It is trivial to notice that the challenger can reply to the second query type by
applying the simulatable property of ZK protocols, i.e., providing a simulated
transcript that correctly verifies Equation (4) and obtains a random value by
evaluating ζ.

On the other hand, this näıve ZK proof gives access to A to all the par-
tial evaluations of the GGM transformation. A can take, w.l.o.g., the partial
evaluation yt−1 and correctly compute A1−xt · φ(yt−1)

ᵀ
= PRF

(
k,x′

)
, which is

a valid PRF evaluation of the input x′ with a different t-th component. With
this knowledge, A can query the challenger on x′ and just verify if the answer
is equivalent to its computation or not, therefore distinguishing between PRF
and ζ. Mutatis mutandis, A can personally compute any input x′ except the
ones that have a different first input-bit x1. This is because A does not hold the
pre-computation y0, which is exactly the secret key k.

Similarly, it is possible to find other uncommon attacks that break other se-
curity properties, e.g., the soundness property for Stern’s protocol. The reason
of all these problems is the disclosure of the partial evaluations, that completely
break the GGM transformation Theorem 2 proof. For this reason, our goal is to
“hide” the partial evaluation, while maintaining the simple and elegant repre-
sentation compliant with Stern’s protocol statement.

Let us consider the map ψ : Fn2 → Fr2 that takes a regular word w of weight
w and outputs a binary vector of length r. The main design property of ψ is to
invert the map φ and to be representable in a linear matrix format.

First of all, let w be a regular word of length n = w · 2b that representa
w as the concatenation of w canonical vectors, i.e. w =

(
en1
| · · · | enw

)
. Let

I2Bb be the map that given an integer j, it outputs, as a row vector, the binary
representation in b-bit, i.e., zeros are added accordingly if necessary.
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Let us consider the binary matrix ψ as:

ψ =

(I2Bb(0)
ᵀ‖ . . . ‖I2Bb

(
2b − 1

)ᵀ)‖ · · · ‖(I2Bb(0)
ᵀ‖ . . . ‖I2Bb

(
2b − 1

)ᵀ)︸ ︷︷ ︸
w times


(5)

By notation abuse, let the evaluation of the map ψ be the matrix multipli-
cation with the matrix ψ in Equation (5). Formally,

ψ(w) = ψ ·wᵀ = ψ ·
(
en1+1 | · · · | enw+1

)ᵀ
=
(
I2Bb(n1)‖ . . . ‖I2Bb(nt)

)ᵀ
Lemma 1. For all y ∈ Fr2, it holds (ψ ◦ φ)(y) = y, i.e., ψ is the inverse of φ.

Proof. Ad oculos, let y = (y1‖ . . . ‖yw).(
ψ ◦ φ

)
(y) = ψ

( (
eB2I(y1)+1‖ . . . ‖eB2I(yw)+1

) )
=
((

I2Bb ◦ B2I
)
(y1)‖ . . . ‖

(
I2Bb ◦ B2I

)
(yw)

)
= (y1‖ . . . ‖yw) = y ut

Given the invertibility property, we are now able to further modify and fix
the näıve approach presented in Eq. (4). For every j ∈ {1, . . . , (t − 1)}, let us
rewrite the equation by moving all the addends to the left-hand side. Formally,

Axi
· φ(yi−1)

ᵀ
= yi

ᵀ ⇐⇒ Axi
· φ(yi−1)

ᵀ ⊕ yiᵀ = 0

⇐⇒ Axi
· φ(yi−1)

ᵀ ⊕
(
ψ ◦ φ

)ᵀ
(yi) = 0

⇐⇒ Axi · φ(yi−1)
ᵀ ⊕ψ · φ(yi)

ᵀ
= 0 (6)

By rewriting Eq. (6) in Eq. (4), define M̂ ∈ Ftr×tn2 and ŝ ∈ Ftn2 , ŷ ∈ Ftr2 as:

M̂ · ŝ :=


Ax1

ψ
. . .

. . .

Axt−1
ψ
Axt

 ·


φ(y0)
ᵀ

...
φ(yt−2)

ᵀ

φ(yt−1)
ᵀ

 =


0
...
0
yt

ᵀ

 =: ŷ (7)

Proposition 2. Let M̂ , ŝ, ŷ as defined in Eq. (7). The related Stern language,

L̂ =
{(
M̂ , ŷ

) ∣∣∣ ∃ ŝ : wt(ŝ) = wt ∧ M̂ · ŝ = ŷ
}

is equivalent to the PRF evaluation language for PRF of Eq. (3), i.e.,

LPRF = {(x,y) | ∃k : PRF(k,x) = y}

Proof. Since the global parameters n, r, w are known, the matrix ψ is defined

and it is trivial to observe that M̂ can be reconstructed with the knowledge of
the matrices A0,A1 and x. Furthermore, since t− 1 components of ŷ are zero,
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only yt is needed to correctly reconstruct the language statement’s vector. To
this point, we can rewrite L̂ as:

L̂ =
{(

(A0,A1,x) ,yt
) ∣∣∣ ∃ ŝ : wt(ŝ) = wt ∧ M̂ · ŝ = ŷ

}
Since the PRF is defined by the matrices A0,A1, yt = PRF(k,x) and the

matrix multiplication represents the GGM iterated PRF computations, we have

L̂ = L′PRF = {(x,y) | ∃ ŝ : wt(ŝ) = wt ∧ PRF(k,x) = y}

and we are left to prove that possessing the PRF secret key k ∈ Fr2 is equivalent
to knowing all the regular-words and partial evaluations yj ∈ Fn2 used in the
GGM transformation, for all indexes j ∈ {0, . . . , (t− 1)}.

Given that the maps φ and ψ are, together, a bijection between Fr2 and the
regular word in Fn2 with weight w, it holds that it is irrelevant which represen-
tation is known. Trivially, the knowledge of k = y0 allows the computation of
all the other partial evaluations yj for j ∈ {1, . . . , (t− 1)} and therefore it holds
LPRF ⊆ L′PRF = L̂. For the same reasons, it is possible to “forget” the partial

evaluation and have LPRF ⊇ L′PRF. In conclusion, it holds that L̂ = LPRF. ut

Corollary 2. By Stern protocol’s Theorem 1 and Proposition 2, executing Stern’s

protocol on
(
M̂ , ŝ, ŷ

)
as defined in Eq. (7), produces a Zero-Knowledge PRF ar-

gument protocol based on the code-based PRF PRF of Section 3.

5 Theoretical Analysis for Implementation Cost

In this section, we provide an application scenario in which our protocol could
be employed and we discuss the protocol’s communication costs.

Let us consider an employee and an employer that are willing to sign an
agreement document that guarantees special treatment for the employee. Since
they do not fully trust each other, they agree on a shared document. To bind
the reached agreement, they ask a notary N to witness the signing phase, of
both the employee and employer, and publicly commit, by signing, the content
of the agreed-document. We assume that the signed and agreed document is
made public. In this way, a notary is fully liable and, at any moment, anyone
can take the signed document and let the notary testify on the agreement’s
trustworthiness. This scenario is quite common, whenever we consider physical
verification of identities or signatures while, the first number-theoretic example
is given by Adleman [1] in 1983.

Let us now consider the case in which the notary N accepts to be liable in
a limited way. More precisely, a verifier V can interact with N and ask to prove
the agreed-document’s correctness but V cannot use the interaction-transcript-
of-the-protocol to further prove the document’s correctness to other people.

This can be seen as the whistle-blower’s notary problem and is depicted in
Figure 3. Let us explain the scenario in detail, while employing our ZK protocol.
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The clients prepare a document x containing all the info that they are willing
to publish. The notary, in possess of a secret key k, will verify the document’s
validity and he/she will publicly commit to the document with y = PRFk(x). A
verifier V will be able to verify the correctness of (x,y) by running the ZK PRF
argument protocol with the notary N . The zero-knowledge property imposes to
the the notary that he must be collaborative and guarantees that V cannot
use the proof-transcript and make N liable. This counter-intuitive second point
is better understood when we change our point of view: N can choose whom
to prove to and therefore he/she can interact with a trustworthy judge that is
interested in the correctness of the document, while N can refuse to interact
with strangers and avoid repercussions of any kind.

BP

Clients Contract x

Notary k
Published
Contracts

Verifier

???

ZK
Protocol

Figure 3. The whistle-blower notary problem.

In this way, “committing” and “proving” are done in different times. The
reasons of this choice find roots in the extremely different cost between “com-
puting” and “communicating” a statement or a proof. For this reason, we classify
applications, such as the one described above, that are computationally-fast but
communication-costly as prove-on-demand protocols, in which the protocol’s
communication cost is low until the proof is requested.

Let us now describe why our protocol is a prove-on-demand protocol. We
upper-bound our ZK protocol communication cost w.r.t. implementation prin-
ciples discussed by Stern [22] and Meziani et al. [21].

First of all, we overestimate the length of a permutation π of the set {1, . . . , n}
as |π| = n log2(n), which is the bit-representation of the permutation’s image
w.r.t. a fixed order, e.g., π =

(
I2Bn(π(1))‖ . . . ‖I2Bn(π(n))

)
. By employing the

random hashing technique, as denoted by Stern, we may use a hash function Hash
and commit to a message m by sampling some randomness ρ of the same length
|m| and commit by computing the hash value of

(
ρ‖ρ⊕m

)
. To verify the decom-

mitment, it is necessary to hold both ρ and m. In this way, the commitment’s
length is exactly the hash digest’s length, denoted as |Hash|.
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Given w, b ∈ N, the number d of Stern’s protocol executions, and the PRF
input space dimension t, the communication cost for our ZK PRF argument is:

Cost(w, b, t, d) = d · CostStern(tw2b, twb)

≤ d ·
(

3|Hash|+ tw ·
(

2b+1
(
1 + b+ log2(tw)

)
+ b
)

+ 2
)

bits

From the X-SYND definition [21], in order to get a security level of 80 bits,
the parameters are fixed as w = 32 and b = 8. We can also assume that the hash
digest is |Hash| = 128 bits. Therefore, if we consider t, d as parameters, we have:

Cost(32, 8, t, d) = d · CostStern(8192t, 256t)

≤ d ·
(
t ·
(

16384 · log2(t) + 229632
)

+ 386
)

bits

With these parameters, we have that our proposed PRF has a space-cost
equal to |A0| + |A0| = 2 · w2b · wb which, in our case, is 0.5 Megabyte. The
output space is 256 bits. Although the matrices used in the computations re-
quire significant cost, our protocol and proposed primitives require only binary
operations and thus have an extremely low communication cost.

It is clear that the communication cost is directly proportional to the sound-
ness probability we want to achieve, i.e., the probability of a successful adver-
sary, who may want to impersonate the notary. For example, in order to get a
soundness probability of less than 2−80, we have to execute the protocol at least
d ≥ 137 times.
We plot the communication cost of running our ZK PRF argument protocol,
depending on the (t, d) choices in Figure 4.
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Figure 4. A heatmap plot of log2

(Cost(32,8,t,d)
8

)
in which, for every t and d, we represent

the communication cost in base-2 logarithmic scale. This means that a value of 20
represents 220 bytes, which is 1 Megabyte.

16



Regarding the PRF input space, we might consider, as a reasonable dimen-
sion, to be either t = 128 or t = 256, as the output space. In these two cases,
the whole communication cost for proving the PRF evaluation would be in the
order of approximately one Gigabyte.

Cost(32, 8, 128, 137) ' 719.79MB Cost(32, 8, 256, 137) ' 1508.08MB

Given the high-communication cost required, we would highly suggest the
employment of our ZK PRF argument protocol only in prove-on-demand ap-
plication scenarios i.e., in applications where proving the PRF argument is not
required frequently and thus, the communication cost, and related time, can
be afforded without disrupting the application’s functionality. We should note
though that considering the great efficiency of the required computations, the
protocol can be executed in devices with low computational abilities.

6 Conclusions and Future Work

In this paper, we construct the first zero-knowledge PRF argument based on the
regular syndrome decoding assumption. Our construction starts from defining
a PRG f , which directly reduces to a RSD(n, 2r, w) problem. By applying the
GGM transformation we obtain a code-based PRF. After rewriting the GGM
evaluation steps as a single linear system, we define the map ψ that consequently,
allow us to rewrite the PRF evaluation in a Stern protocol statement. Finally, we
obtain our code-based ZK PRF argument protocol by applying Stern’s protocol.

Providing cryptographic primitives under code-based assumptions is of sig-
nificant interest since code-based cryptography provides significant promise to
be post-quantum secure. Furthermore, ZK PRF argument protocol can be em-
ployed to construct other code-based primitives. For instance, Brunetta et al.’s
construction [6] would allow us to define a simulatable verifiable random func-
tion, i.e., a cryptographic primitive that allows to prove non-interactively the
correct PRF computation. These advanced primitives can be used to simplify
complex multi-party protocols employed in applications that require sampling
a pseudorandom element from a set without allowing any party to maliciously
affect the result, such as e-cash, e-voting and cryptographic lotteries.

As further work, we are interested in improving the proposed protocol’s effi-
ciency. Some possible directions, we may consider is improving Stern’s protocol
communication cost is by employing Aguilar et al.’s [2] or Cayrel et al.’s [8]
protocols that also provide lower soundness error. Another direction is to reduce
the PRF’s fingerprint by using quasi-cycle codes and not random-binary ones.
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