
DEVA: Decentralized, Verifiable Secure
Aggregation for Privacy-Preserving Learning

Georgia Tsaloli1, Bei Liang2, Carlo Brunetta1, Gustavo Banegas3, and
Aikaterini Mitrokotsa1,4

1 Chalmers University of Technology, Gothenburg, Sweden
{tsaloli,brunetta}@chalmers.se

2 Beijing Institute of Mathematical Sciences and Applications, Beijing, China
lbei@bimsa.cn

3 Inria and Laboratoire d’Informatique de l’Ecole polytechnique, Institut
Polytechnique de Paris, Palaiseau, France

gustavo@cryptme.in
4 University of St. Gallen, School of Computer Science,

St. Gallen, Switzerland
katerina.mitrokotsa@unisg.ch

Abstract Aggregating data from multiple sources is often required in
multiple applications. In this paper, we introduce DEVA, a protocol that
allows a distributed set of servers to perform secure and verifiable aggre-
gation of multiple users’ secret data, while no communication between
the users occurs. DEVA computes the sum of the users’ input and pro-
vides public verifiability, i.e., anyone can be convinced about the cor-
rectness of the aggregated sum computed from a threshold amount of
servers. A direct application of the DEVA protocol is its employment
in the machine learning setting, where the aggregation of multiple users’
parameters (used in the learning model), can be orchestrated by multiple
servers, contrary to centralized solutions that rely on a single server. We
prove the security and verifiability of the proposed protocol and evaluate
its performance for the execution time and bandwidth, the verification
execution, the communication cost, and the total bandwidth usage of
the protocol. We compare our findings to the prior work, concluding
that DEVA requires less communication cost for a big amount of users.

Keywords: secure aggregation, privacy, verifiability, decentralization

1 Introduction

Mobile phones, wearables, and other Internet-of-Things (IoT) devices are all
connected to distributed network systems. These devices generate a significant
amount of data, that often need to remain private. These data in many cases need
to be aggregated to compute statistics, or even employed for user modeling and
personalization via federated learning algorithms. Such an application scenario
gives rise to the secure data aggregation problem, the goal of which is to compute

sums of local updated parameters from individual users’ devices in a privacy-
preserving manner, i.e., any individual user’s update is not revealed in the clear.

In the federated learning setting, each user maintains her private data on
her mobile device, and shares local updated parameters (e.g., gradients) to the
server. The central server updates the training model using the aggregated up-
dates and performs the appropriate testing of the model. An advantage of fed-
erated training is that it diminishes the risk of compromising the user’s privacy,
since it allows users (mobile devices or organizations) to collaboratively train
learning models under the orchestration of a central server, while the data remain
located on the sources (i.e., mobile devices or data centers of organizations).

The secure aggregation problem has received significant attention in the liter-
ature. Bonawitz et al. [13] proposed a practical and secure aggregation protocol
for federated learning, which enables a central server to compute the sum of
multiple users’ parameters and guarantees robustness in a dynamic environment
where users may drop out. Even though Bonawitz et al. [13] addressed the prob-
lem of maintaining user’s privacy (i.e., local gradients) in the learning process,
Xu et al. [21] considered another fundamental issue of data integrity in federated
learning, i.e., how to assure the correctness of the aggregated results returned
from the central server, since a malicious server might modify the aggregation
process [11], bias the final result and cause inferences according to its prefer-
ences [6, 11, 16, 22]. To this end, Xu et al. provided a privacy-preserving and
verifiable aggregation protocol, VerifyNet [21]. The latter enables the users to
verify the correctness of the computed sum, while guaranteeing the users’ privacy
in the training process. In our work, we focus on the verifiability as considered
in [21], i.e., guaranteeing the correctness of the aggregated result. Bonawitz et
al.’s [13] and Xu et al.’s [21] solutions adopt a centralized architecture since a
single central server is responsible for the aggregation of the users’ parameters
and orchestrates the federated learning process. Even though a central server is
an important component of the federated learning process, a single server might
attempt to bias the model and cause inferences. For instance, the server may
tamper with the learning model so that it always misclassifies a certain pat-
tern in an image recognition system, or allows access to unauthorized users in
a biometric authentication system [5]. Decentralized systems have raised con-
siderable interest, since they distribute the storage and the computation among
multiple servers, thus allowing different organizations to collaboratively perform
computations and diminish the security threats incurred by centralized systems.

In this paper, we propose DEVA, a decentralized, verifiable and privacy-
preserving aggregation protocol, which enables multiple servers to jointly com-
pute the sum of the parameters of multiple users, and further to train and eval-
uate a global learning model. We stress that although VerifyNet [21] achieves
data integrity in the process of training neural networks, it employs a single cen-
tral server for both the aggregation and for returning the verification results. In
contrary, our DEVA protocol performs federated learning collaboratively by em-
ploying multiple servers for the aggregation process. A single server (hosted by a
single organization) might not be trusted by different organizations with similar

2

objectives (e.g., hospitals, banks) that want to collaboratively train learning
models [7] and thus, multiple cloud servers can resolve this issue. The involve-
ment of multiple servers is challenging, since we need to find a way to obtain the
aggregated result from partial outputs, but also need to ensure the correctness
of the computed result. In this work, we make the following contributions: (i)
We propose DEVA, a protocol for securely computing the sum (aggregation) of
n inputs from multiple users, by employing multiple servers. Our DEVA has a
constant number of rounds, low communication cost for each server, and toler-
ates up to n− (tkey + 1)m users dropping out during the protocol execution, for
tkey being a threshold value. Contrary to the setting of only one central server
that requires limited trust, in DEVA no server has to be individually trusted
and a fraction of the servers can collude. DEVA also handles possible servers’
failure as it requires t + 1 servers to compute the sum. (ii) DEVA guarantees
the individual user’s privacy, i.e., the servers learn only the aggregated result of
all users’ inputs without knowing any user’s input itself. (iii) DEVA ensures the
correctness of the computed sum by requiring the employed servers to provide
a proof about the correctness of their aggregated results. We prove that it is in-
feasible for any adversary to deceive the users by altering the aggregated results
with a valid proof. (iv) DEVA is practical and we present experimental results
from our prototype implementation. DEVA provides less communication cost for
each user participating in the protocol. DEVA also allows to maintain bandwidth
cost since increased amount of users can be leveraged by having more servers.
Related Work. To solve the security, accuracy and privacy challenges in learn-
ing, some works have been proposed recently [12, 13, 15, 16]. Phong et al. [12]
proposed a secure deep learning system based on additively homomorphic en-
cryption, Shokri et al. [16] proposed a privacy-preserving deep learning protocol
focusing on the trade-off between private and accurate learning. Bonawitz et
al. [13] proposed a secure aggregation protocol tailored for the federated learn-
ing process that attempts to achieve a good balance between security, privacy
and efficiency, being robust to users dropping out. However, these solutions have
multiple limitations:(i) they assume a single server which is not suitable when
different organizations collaboratively train a model; and (ii) they provide no
verifiability guarantees of the learning model. We stress that Bonawitz et
al. [13] discuss how to address the input verifiability, i.e., verifying that the
inputs are in the correct range; however, they do not deal with the issue of
output verifiability, i.e., verifying that the aggregated result is correct. Some
works [4, 5, 10, 17, 21] attempted to address the problem of verifiability (out-
put correctness), but all of them require a central server and additionally, either
they ignore users dropping out [4, 5, 10] and privacy leakages [5] or require spe-
cial hardware [17] (thus, placing trust to the hardware manufacturer) or costly
computations for verification (low efficiency) [21]. They consider a centralized
system, while our goal is to avoid placing the trust to a single server and al-
low different organizations (hosted by different cloud servers) to collaboratively
perform the learning process. Thus, we employ multiple servers and achieve de-
centralized aggregation.

3

2 Preliminaries

In this section, we show definitions and assumptions used throughout the paper.
Hash functions. We employ a collision-resistant homomorphic hash function
[23] satisfying additive homomorphism [9], i.e., H : x 7→ gx where g is a generator
of the group G of prime order p.
Key Agreement. Let G be a cyclic group of order p prime with generator
g, e.g., groups based on elliptic curves [8]. Let us report the definition of the
Diffie-Hellman key agreement [3] and the related assumptions.

Assumption 1 (Discrete Logarithm Problem) Consider a cyclic group G
of order p prime with generator g. Given y ∈ G, the discrete logarithm prob-
lem (dLog) requires to find the value x ∈ [0, p−1] such that gx = y. We assume
the advantage of solving the dLog problem to be negligible, i.e., ϵdLog < negl.

Assumption 2 (Diffie-Hellman Assumptions) Consider a cyclic group G
of prime order p with generator g and a, b ∈ [0, p−1]. Given elements (A, B) =(
ga, gb

)
, the computation Diffie-Hellman problem (CDH) requires to com-

pute the element gab ∈ G. The distinguishing Diffie-Hellman problem
(DDH) requires to correctly distinguish between (g, A, B, gab) and (g, A, B, gc)
for some random c ∈ [0, p−1]. We assume the advantage of solving the CDH and
the DDH problems to be negligible, i.e., ϵCDH < negl and ϵDDH < negl.

Definition 1 (Diffie-Hellman Key Exchange). Consider a Diffie-Hellman
key agreement scheme with algorithms (Ksetup, Kgen, Kagree) to be defined as:

– Ksetup(1λ)→ pp: the setup algorithm takes as input the security parameter
and outputs the public parameters pp which contain a prime p, the descrip-
tion of a cyclic group G of order p and a generator g for the group G.

– Kgen(pp, Ui)→ (ski, pki): the user Ui samples a value ski ∈ [0, p−1] and com-
putes pki = ga. The key generation algorithm outputs (ski, pki) =

(
ski, gski

)
.

– Kagree(ski, pkj)→ sij: the user Ui runs the key agreement algorithm with its
own secret ski and Uj’s public key pkj = gskj to obtain the agreed secret key
sij = pkski

j = gskj ·ski between the users Ui and Uj.
The key agreement is said to be correct if for any pp← Ksetup(1λ), (ski, pki)←
Kgen(pp, Ui), and (skj , pkj) ← Kgen(pp, Uj), it holds that sij = sji. The key
agreement scheme is said to be secure if for any pp← Ksetup(1λ), (ski, pki)←
Kgen(pp, Ui), as well as (skj , pkj)← Kgen(pp, Uj), it holds that any PPT adver-
sary A has negligible probability to compute sij from (pki, pkj). The key agree-
ment’s security reduces to the CDH and dLog assumptions.

Secret Sharing. We provide the definition of a (t, m)-threshold secret sharing
scheme in order to achieve additive homomorphism in our protocols. Precisely:
Definition 2. A (t, m)-threshold secret sharing scheme allows a user Ui to split
a secret xi ∈ F, where F is the input domain, into m shares, such that any t + 1
shares can be used to reconstruct xi, while any set of at most t shares gives no
information about xi. Let S be the set such that |S| = m and T ⊆ S with |T | > t.
Then we consider two algorithms (SS.share, SS.recon):

4

– SS.share(t, xi, j,S)→ {xij}j∈S : for a given threshold t, a secret input xi ∈ F,
an index j which corresponds to the receiver of the share and the set S, the
algorithm outputs a list of shares, namely, {xi1, . . . , xim}.

– SS.recon(t, {xij}j∈T , T)→ xi: given a threshold t, |T | > t amount of shares
xij and the set T , the algorithm gives xi.

Shamir’s threshold secret sharing [14], as well as other secret sharing schemes [18,
19, 20] have an homomorphic property, as described by Benaloh [1]. More pre-
cisely, these schemes allow to combine multiple secrets by performing compu-
tations directly on shares. For linear functions, a (t, m) threshold scheme has
the additive homomorphic property if the sum of the shares are shares of the
sum [1]. Thus, with our notation, if we consider n secret inputs x1, . . . , xn and
denote the sum of shares of each j ∈ T by yj , then SS.recon(t, {yj}j∈T , T)→ y,
where y = x1 + . . . + xn (1).

In fact, Shamir’s scheme is an additive homomorphic secret sharing scheme
and, therefore, we use it in the implementation of our protocol.
Zero-Knowledge Proofs of Discrete Logarithm Knowledge. We will need
a zero-knowledge proof of knowledge of a value α ∈ [0, p−1] such that A = gα and
B = hα given the group generators g, h and the corresponding values A, B. We
denote the protocol which generates this proof by DLEQ(g, h, A, B, α). Chaum
and Pedersen proposed a sigma protocol to perform this proof in [2]. Precisely,
the zero knowledge protocol we use is specified as follows: DLEQ(g, h, A, B, α):

– Proof.DLEQ(g, h, A, B, α): (i) for the given g, h, compute s1 = gs, s2 = hs

where s is a field element, chosen uniformly at random; (ii) for a hash function
Ha such that Ha(·) ∈ {0, 1}, compute c = Ha(g, h, A, B, s1, s2), (iii) compute
r = s + c · α, and (iv) output the proof (s1, s2, r).

– Verify.DLEQ(g, h, A, B, (s1, s2, r)): (i) for the aforementioned hash function,
compute c = Ha(g, h, A, B, s1, s2), (ii) check if both gr ?= s1·Ac and hr ?= s2·Bc

are satisfied, and (iii) if they are satisfied, accept the proof, otherwise abort.

3 Framework of a DECENTA Problem

In this chapter, we describe the DECENTA problem as well as the required prop-
erties that a solution to DECENTA must satisfy.
Problem Statement. Consider n users U1, . . . , Un, each with a secret input xi,
and m servers S1, . . . , Sm. A DECENTA problem aims to securely compute the
sum of the users’ secret inputs, i.e., y =

∑n
i=1 xi, by aggregating more than a cer-

tain amount of partial results; which are computed by the servers. Moreover, the
aggregated final result y can be publicly verified, i.e., anyone is able to check if y is
the correct sum of all users’ inputs without revealing their input itself.

In the setting of a DECENTA problem, no communication is allowed between the
users; thus rendering it suitable for application settings where an immense number of
users are participating, e.g., this is the case for the federated learning setting, where
a very large number of users participate via their mobile devices and thus, cannot
establish direct communications channels with other mobile devices (need to rely

5

on a server to play the intermediate communication role). Furthermore, DECENTA
supports a dynamic setting, where the participating users (mobile devices) may drop
out during the execution of the protocol and the correct aggregation of the values
of the remaining users (devices) is still possible. The DECENTA problem captures
both features of decentralization, since multiple servers are involved in the system
instead of a single centralized server, thus, allowing a subset of the servers to be
corrupted while still securely computing the sum value; and verifiability since it allows
the participating users to verify the correctness of the computed result. A protocol
solving the DECENTA problem involves the following phases:
Setup: generation of all key pairs that are used during the protocol execution.
Shares and Public Values Generation: each user Ui hides its secret data xi by

splitting it into different shares that are sent to the servers instead of the actual
secret users’ data. Additionally, each user computes and publishes some values that
are used by a verifier to fulfill, later on, the verification process.
Aggregation: it consists of all the steps that are needed to output partial values

by each server, which are appropriately used for the generation of the final result y,
and the proof (that y is indeed the correct sum), denoted by σ.
Verification: ultimately, combining suitably the result y and the proof σ, this phase

performed by a verifier gives out either 1, implying that y is the actual correct sum
of all users’ secret data xi, or 0 implying that y is incorrect.

Threat Model and Design Goal. We adopt the threat model proposed by Xu
et al., which is used to define the security of VerifyNet [21], a recently proposed
privacy-preserving and verifiable federated learning framework. In contrast to the
single server (i.e. centralized) setting used in VerifyNet, we adjust the threat model
to a decentralized multiple-server setting. Precisely, we consider that both the cloud
servers and the users follow the protocol’s execution as agreed, but they may also try
to infer information about other users’ data. Additionally to this, in our protocol, we
employ multiple servers with the following abilities: (i) a threshold of the servers may
collude to discover the users’ private inputs, and (ii) they can modify their computed
results and forge proofs in order to provide an incorrect sum to be accepted.

Properties. We require a solution to the DECENTA problem to be correct, secure,
and verifiable. Below, we provide the corresponding definitions.

Definition 3 (Correctness). For all n users U1, U2, . . . , Un with inputs x1, . . . , xn,
for all m servers S1, . . . , Sm, where all Ui and Sj honestly execute the protocol, and
for all the partial values output by the servers Sj , the protocol is correct if it satisfies
the following requirement:

Pr
[

Verification(pub pars, σ, y) = 1 ∧ y =
n∑

i=1
xi

]
= 1.

where pub pars denotes all public parameters necessary for the protocol (if any), y
denotes the aggregated final result, which comes from the partial values output by
the servers during the protocol, and σ denotes the corresponding proof of y.

Definition 4 (Verifiability). For n users U1, . . . , Un with inputs x1, . . . , xn, that
honestly execute the protocol, and any set of corrupted servers T = {Sj1 , . . . , Sj|T |}

6

with |T | < m that are controlled by a PPT adversary A, i.e., ∀j ∈ [j1, j|T |] such that
Sj ∈ T , Sj gives {x1j , . . . , xnj} to A where xij is the share given to the server Sj

from the user Ui. A outputs the malicious partial results on behalf of the corrupted
servers Sj ∈ T , while the honest servers Sj /∈ T output correct partial results. Then,
if A outputs an aggregated result y′ together with the corresponding proof σ′ such
that y′ ̸=

∑n
i=1 xi, we require that A can pass the verification phase with negligible

probability. More precisely, for any PPT adversary A, it holds:

Pr [Verification(pub pars, σ′, y′) = 1] ≤ ε,

for some negligible ε; pub pars are the public parameters of the protocol.

Definition 5 (Security). Let T = {Sj1 , . . . , Sj|T |} be the set of the corrupted
servers with |T | ≤ t which are controlled by the adversary A. The goal of the
adversary A is to infer sensitive information about the users’ data. We consider
security in the setting where all the servers (including the corrupted servers) correctly
execute the protocol. A protocol is t-secure if there is no leak of information about
the users’ data besides what can be derived from publicly available information.

4 A DECENTA Solution: DEVA

In this section, we present DEVA, an interactive multi-round protocol, inspired by
Segal et al. [13] work, designed to solve the DECENTA problem.
DEVA Construction. At any point during the protocol, users may drop out, i.e., a
user Ui after sending the round-k messages, may not send the consecutive round-
(k + 1) messages, where k ∈ {1, 2, 3}. By the end of the last round, at least t + 1
servers together, where t ≤ m−1, will be able to produce an outcome y and a proof
σ, which are used to allow anyone to verify if y is indeed the sum of all the inputs
of the “involved” (active) users.

Briefly, our idea is to split the secret input xi of each user Ui among m servers via
Shamir’s threshold secret sharing as described in Sec. 2, and provide xij to server Sj .
Given the property of Shamir’s secret sharing scheme to be additive homomorphic,
any subset of t + 1 servers will be enough to reconstruct y (i.e., the sum of the
inputs of the active users) from the given shares xij . Our main concern is how to
prove that the resulted sum y is correct without revealing each user’s secret input.
A naive way is that each user publishes a value gxi , and the verification is to check
if

∏
i gxi = gy. We should note that the public value gxi , probably reveals some

information of xi, but not all xi (due to the dLog assumption), so we need to
randomize gxi with some random value Rani that belongs in the employed group
such that

∏
i Rani = 1, which implies

∏
i(gxi ·Rani) =

∏
i gxi = gy. More precisely,

the trick is to generate a randomness Rani for each user Ui, and looking ahead,
Rani consists of a sequence of agreed keys between Ui and each other user Ui′ .

Each user needs to execute a key agreement with the other participating users.
Thus, we assign groups of participating users to a unique server to reduce the com-
putational and communication costs. More precisely, we sort n users into m groups,
each of which consists of n/m amount of users. Here to simplify the explanation,

7

we assume m | n, for the general case m ∤ n please refer to our protocol in detail.
Next, each group of n/m users generates their own randomness, via their corre-
sponding server, following the trick proposed by Bonawitz et al. [13] in which the
server plays the role of a bulletin board and coordinates the communications in each
group. Later, we address the possible dropouts by suitably adapting the approach
in [13] to our case. We assume that, by the end of the last round, there are at least
tkey + 1 users which have not dropped out, in each group of n/m users. Our DEVA
protocol is described below:
Setup: all parties are given the security parameter λ, the numbers of users n and

servers m, thresholds t < m and tkey < ⌈ n
m⌉, honestly generated pp← Ksetup(1λ),

parameter q such that Zq is the space from which inputs are sampled, and a group
G of prime order p to be used for key agreement. All n users are partitioned into m
disjoint subsets, i.e., Γ1, . . . , Γm where for any j ∈ [1, m], Γi ∩ Γj = ∅. Here, we
assume n is divided by m, and | Γj |= n

m for j ∈ [1, m].5
Round 1 - KeyGeneration for user Ui associated with Sj : Ui generates key

pairs (skKA
i , pkKA

i) ← KA.Kgen(pp, Ui) along with the pairs (skPKE
i , pkPKE

i) ←
PKE.KeyGen(1λ); and publish (pkKA

i , pkPKE
i) before moving to the next round;

Round 1 - KeyGeneration for server Sj associated with Γj : Sj collects users’
public keys (We denote this set of users by Γ 1

j); broadcasts to all users belonging
to Γ 1

j the list of keys {(pkKA
i , pkPKE

i)}Ui∈Γ 1
j
, and goes to next round;

Round 2 - ShareKeys for user Ui associated with Sj : Ui receives the list
{(pkKA

i , pkPKE
i)}Ui∈Γ 1

j
broadcasted by the server Sj and proceeds to sharing keys:

◦ using a tkey-out-of-
∣∣Γ 1

j

∣∣, with tkey <
∣∣Γ 1

j

∣∣, secret sharing scheme, it generates
shares of skKA

i for each Ui′ ∈ Γ 1
j . More precisely, user Ui generates skKA

i,i′ ←
SS.share(tkey, skKA

i , Ui′ , Γ 1
j);

◦ uses PKE to encrypt shares skKA
i,i′ under the public key pkPKE

i′ of each other user
Ui′ ∈ Γ 1

j . More precisely, Ui computes ci,i′ ← PKE.Enc(pkPKE
i′ , skKA

i,i′);
Ui sends ciphertexts {ci,i′}Ui′ ∈Γ 1

j
to the server Sj , and goes to the next round;

Round 2 - ShareKeys for server Sj associated with Γ 1
j : Sj collects the list of

users Ui which have sent ci,i′ (we denote this set of users by Γ 2
j); and sends to each

user Ui′ ∈ Γ 2
j all ciphertexts under his public key pkPKE

i′ , i.e., {ci,i′}Ui′ ∈Γ 2
j
;

Round 3 - ShareInputs for user Ui associated with Sj : Ui receives the list of
ciphertexts {ci′,i}Ui′ ∈Γ 2

j
broadcasted by Sj and proceeds to sharing its input:

◦ with the list {pkKA
i }Ui∈Γ 2

j
broadcasted by the server Sj , uses the key agreement

scheme to compute the agreed key between any two users Ui, Ui′ ∈ Γ 2
j , i.e.,

sii′ ← KA.Kagree(skKA
i′ , pkKA

i);
◦ uses a t-out-of-m secret sharing scheme to generate shares of the input xi for

each server Sj′ for j′ ∈ [1, m], i.e., xij′ ← SS.share(t, xi, Sj′ , {Sj′}j′∈[1,m]);
5 If m ∤ n, then | Γj |= ⌈ n

m
⌉ for j ∈ [1, m − 1] and | Γm |= n − (m − 1)⌈ n

m
⌉.

8

◦ randomly selects Ri
′ and computes Ri

′′ such that Ri
′ + Ri

′′ = |G| · Int (2)
where Int denotes any positive integer, and computes the values

τi := gxi · gRi
′
, ρi := gRi

′′
·

∏
i′∈Γ 2

j
:i<i′

sii′ ·
∏

i′∈Γ 2
j

:i>i′

si′i
−1.

Ui publishes and sends (τi, ρi) to the specified server Sj and, additionally, sends xij′

to each server Sj′ where j′ ∈ [1, m], and goes to the next round;
Round 3 - ShareInputs for server Sj associated with Γ 2

j : Sj collects the list of
users Ui which have sent (τi, ρi) to Sj (denoted by Γ 3

j); then, Sj collects the shared
inputs xij of all Ui ∈

⋃m
j=1 Γ 3

j , i.e., {xij}Ui∈Ω where Ω :=
⋃m

j=1 Γ 3
j ;

Round 4 - Aggregation for user Ui associated with Sj : on receiving the ci-
phertexts {ci′,i}Ui′ ∈Γ 2

j
of each user Ui′ , with the decryption key skPKE

i , Ui decrypts
{ci′,i}Ui′ ∈Γ 2

j
. More precisely, Ui gets skKA

i′,i ← PKE.Dec(skPKE
i , ci′,i), and sends a

list of shares {skKA
i′,i}Ui′ ∈Γ 2

j
\Γ 3

j
to the server Sj ;

Round 4 - Aggregation for server Sj associated with Γj : Sj collects the list of
shares {skKA

i′,i}Ui′ ∈Γ 2
j

\Γ 3
j

from the users Ui (denote this set of users by Γ 4
j) such that∣∣Γ 4

j

∣∣ ≥ tkey; Consecutively, for each user Ui′ ∈ Γ 2
j \ Γ 3

j , the server Sj :
◦ evaluates the shared keys skKA

i′ by running the SS.recon(tkey, {skKA
i′,i}i∈Γ 4

j
, Γ 4

j)
reconstruction algorithm, and computes sii′ ← KA.Kagree(skKA

i′ , pkKA
i), i.e., the

agreed keys sii′ ;
◦ evaluates the missing values zi′ :=

∏
i∈Γ 3

j
:i<i′ s−1

ii′ ·
∏

i∈Γ 3
j

:i>i′ si′i, ∀Ui ∈ Γ 3
j ;

◦ computes ωi′ :=
∏

i∈Γ 3
j

:i<i′(pkKA
i)−1 ∏

i∈Γ 3
j

:i>i′ pkKA
i for all users Ui ∈ Γ 3

j , and
a proof Proof.DLEQ(g, ωi′ , pkKA

i′ , zi′ , skKA
i′) with witness skKA

i′ using the ZK
protocol in [2], described in detail in Sec. 2;
◦ computes the partial value yj :=

∑
Ui∈Ω xij ;

The list
(
{pkKA

i }Ui∈Γ 3
j
, yj , {zi′ , Proof.DLEQ(g, ωi′ , pkKA

i′ , zi′ , skKA
i′)}Ui′ ∈Γ 2

j
\Γ 3

j

)
is

finally given as the output by the server Sj ;
Public Verification: given a set of servers T where |T | > t, any verifier:
◦ gets from each server Sj the set of active users {pkKA

i }Ui∈Γ 3
j
, and computes

ω̂i′ :=
∏

i∈Γ 3
j

:i<i′(pkKA
i)−1 ·

∏
i∈Γ 3

j
:i>i′ pkKA

i for each user Ui′ ∈ Γ 2
j \ Γ 3

j ;
◦ executes Verify.DLEQ(g, ω̂i′ , pkKA

i′ , zi′ , Proof.DLEQ(g, ωi′ , pkKA
i′ , zi′ , skKA

i′))
to check if it satisfies gskKA

i′ =pkKA
i′ and (ω̂i′)skKA

i′ =zi′ , for each user Ui′ ∈ Γ 2
j \Γ 3

j .
If it fails, abort and output 0.
◦ computes the final result y := SS.recon(t, {yj}j∈T , T) given |T | servers, the

value σ as σ :=
m∏

j=1

 ∏
Ui∈Γ 3

j

τi ·
∏

Ui∈Γ 3
j

ρi ·
∏

Ui′ ∈Γ 2
j

\Γ 3
j

zi′

 and checks if σ
?=

H(y), for H defined to be the hash function described in Sec. 2. If true, output
(y, 1). Otherwise output 0.

Below, we state the DEVA’s satisfied properties.

9

Theorem 1 (DEVA Correctness). The DEVA protocol is correct, i.e., it holds
Pr

[
Verification(σ, y) = (y, 1)

]
= 1, where σ and y are the outputs of the protocol,

honestly executed by all users and servers.

We present and prove the following lemma which is necessary to prove DEVA’s
properties. We abuse notation by equivalently denoting Ui ∈ Γ 3

j as i ∈ Γ 3
j .

Lemma 1. It holds that

∏
i∈Γ 3

j

 ∏
i′∈Γ 2

j
:i<i′

sii′

∏
i′∈Γ 2

j
:i>i′

s−1
i′i

 · ∏
i′∈Γ 2

j
\Γ 3

j

 ∏
i∈Γ 3

j
:i<i′

s−1
ii′

∏
i∈Γ 3

j
:i>i′

si′i

 =

=
∏

i∈Γ 3
j

ρ̂i ·
∏

i′∈Γ 2
j

\Γ 3
j

zi′ = 1
(3)

Proof (DEVA’s Lem. 1). Since Γ 2
j ≡ Γ 3

j ∪ (Γ 2
j \ Γ 3

j), for all i ∈ Γ 3
j , it holds

ρ̂i =

 ∏
i′∈Γ 3

j
:i<i′

sii′

∏
i′∈Γ 2

j
\Γ 3

j
:i<i′

sii′

 ·
 ∏

i′∈Γ 3
j

:i>i′

s−1
i′i

∏
i′∈Γ 2

j
\Γ 3

j
:i>i′

s−1
i′i


Observe that

∏
i∈Γ 3

j

(∏
i′∈Γ 3

j
:i<i′ sii′ ·

∏
i′∈Γ 3

j
:i>i′ s−1

i′i

)
= 1, thus implying,

∏
i∈Γ 3

j

ρ̂i =
∏

i∈Γ 3
j

 ∏
i′∈Γ 2

j
\Γ 3

j
:i<i′

sii′

∏
i′∈Γ 2

j
\Γ 3

j
:i>i′

s−1
i′i


=

∏
i′∈Γ 2

j
\Γ 3

j

 ∏
i∈Γ 3

j
:i<i′

sii′

∏
i∈Γ 3

j
:i>i′

s−1
i′i

 =
∏

i′∈Γ 2
j

\Γ 3
j

z−1
i′

⊓⊔

Proof (DEVA’s Correctness - Thm. 1). Let Ω =
⋃m

j=1 Γ 3
j be the set of all users

that have sent shared inputs xij to their corresponding servers. For any T set of
servers with |T | > t, it holds:

y = SS.recon(t, {yj}j∈T , T) see eq.(1)=
∑
i∈Ω

xi (4)

By construction, we get the following relation that is needed later on:∏
Ui∈Γ 3

j

ρi =
∏

i∈Γ 3
j

gRi
′′
·

∏
i′∈Γ 2

j
,i′<i

sii′ ·
∏

i′∈Γ 2
j

,i′>i

s−1
ii′

Eq. (3)=
∏

i∈Γ 3
j

gRi
′′
·

∏
i∈Γ 3

j

ρ̂i (5)

Therefore, we can expand σ as follows:

10

σ =
m∏

j=1

 ∏
Ui∈Γ 3

j

τi

∏
Ui∈Γ 3

j

ρi

∏
Ui′ ∈Γ 2

j
\Γ 3

j

zi′

 =

Eq. (5)=
m∏

j=1

 ∏
i∈Γ 3

j

gxi+Ri
′

 ∏
i∈Γ 3

j

gRi
′′ ∏

i∈Γ 3
j

ρ̂i

 ∏
i′∈Γ 2

j
\Γ 3

j

zi′


=

m∏
j=1

 ∏
i∈Γ 3

j

gxi+Ri
′ ∏

i∈Γ 3
j

gRi
′′

 ·
 ∏

i∈Γ 3
j

ρ̂i

∏
i′∈Γ 2

j
\Γ 3

j

zi′


Lem. 1=

m∏
j=1

 ∏
i∈Γ 3

j

gxi+Ri
′ ∏

i∈Γ 3
j

gRi
′′

 =
∏
i∈Ω

gxi+Ri
′+Ri

′′

Eq. (2)= g
∑

i∈Ω
xi Eq. (4)= gy

(6)

Thus, we get that σ = gy = H(y) which shows that the verification will give 1
with probability 1, i.e., Pr [Verification(σ, y) = (y, 1)] = 1. ⊓⊔

Theorem 2 (DEVA Verifiability). For n users {Ui}i∈[n] with inputs {xi}i∈[n]
such that y =

∑n
i=1 xi, which honestly execute the protocol, consider any set of

corrupted servers T = {Sj1 , . . . , Sj|T |} with |T | < m which are controlled by a PPT
adversary A. The verifiability requirement of DEVA follows Def. 4 and it is specified
as follows:

1. Users and servers run the protocol’s setup round 1 and round 2.
2. Execute round 3 and, ∀j ∈ [j1, j|T |] such that Sj ∈ T , the server Sj gives
{x1j , . . . , xnj} to A where xij is the share given to Sj from the user Ui.

3. Given the tuples output by the corrupted servers Sj ∈ T at the end of round 4,
A outputs

(
yj

∗, {z∗
i′ , Proof.DLEQ(g, ω∗

i′ , pkKA
i′ , z∗

i′ , skKA
i′)}Ui′ ∈Γ 2

j
\Γ 3

j

)
as a ma-

licious tuple. For honest servers Sj /∈ T , it honestly computes and publishes(
yj , {zi′ , Proof.DLEQ(g, ωi′ , pkKA

i′ , zi′ , skKA
i′)}Ui′ ∈Γ 2

j
\Γ 3

j

)
.

4. A outputs the aggregated result y′ and the corresponding proof σ′ such that
y′ ̸= y.

For any PPT adversary A, DEVA satisfies Pr [Verification(σ′, y′) = 1] ≤ negl.

Proof (DEVA’s Verifiability - Thm. 2). Assume Verification(σ′, y′) = 1, where
y′ = y + ∆ with ∆ ̸= 0. Due to the property of proof of knowledge, with
overwhelming probability A knows the secret keys (witnesses) skKA

i′ of all users
that dropout at the end of round 2 and before round 3, such that the proof
Proof.DLEQ(g, ω∗

i′ , pkKA
i′ , z∗

i′ , skKA
i′) is valid, i.e., gskKA

i′ =pkKA
i′ and (ω∗

i′)skKA
i′ =z∗

i′ . Let
Γ 2

j \Γ 3
j be the list of honestly dropped users at the end of round 2 and before

round 3. Let us consider the two possible cases:

11

– A reports an active user as dropped. W.l.o.g., denote this user as Ufd and
let zfd denote the related missing value computed6. Then, we get:

Verification(σ′, y′) = 1⇐⇒ σ′ = H(y′)

⇐⇒
m∏

j=1

 ∏
Ui∈Γ 3

j

τi

∏
Ui∈Γ 3

j

ρi

∏
Ui′ ∈Γ 2

j
\Γ 3

j

zi′

 zfd

 = gy′

⇐⇒
m∏

j=1

 ∏
Ui∈Γ 3

j

τi

∏
Ui∈Γ 3

j

ρi

∏
Ui′ ∈Γ 2

j
\Γ 3

j

zi′

 m∏
j=1

zfd = gy+∆

Eq. (6)⇐⇒ gy
m∏

j=1
zfd = gyg∆ ⇐⇒

m∏
j=1

zfd = g∆

– A reports a dropped out user as active. W.l.o.g., denote this user as Ufa and
let zfa denote the value computed for this user. Then, we get:

Verification(σ′, y′) = 1⇐⇒ σ′ = H(y′) (7)

and expanding σ′ we have:

σ′ =
m∏

j=1

 ∏
Ui∈Γ 3

j

τi

∏
Ui∈Γ 3

j

ρi

∏
Ui′ ∈Γ 2

j
\(Γ 3

j
∪Ufa)

zi′


⇐⇒ σ′ =

m∏
j=1

 ∏
Ui∈Γ 3

j

τi

∏
Ui∈Γ 3

j

ρi

∏
Ui′ ∈Γ 2

j
\(Γ 3

j
∪Ufa)

zi′

 (zfaz−1
fa)


⇐⇒ σ′ =

m∏
j=1

 ∏
Ui∈Γ 3

j

τi

∏
Ui∈Γ 3

j

ρi

∏
Ui′ ∈Γ 2

j
\Γ 3

j

zi′

 z−1
fa


⇐⇒ σ′ =

m∏
j=1

 ∏
Ui∈Γ 3

j

τi

∏
Ui∈Γ 3

j

ρi

∏
Ui′ ∈Γ 2

j
\Γ 3

j

zi′

 m∏
j=1

z−1
fa

Eq. (6)⇐⇒ σ′ = gy
m∏

j=1
z−1

fa

Then, Eq. (7) becomes, equivalently:

Eq. (7)⇐⇒ gy
m∏

j=1
z−1

fa = gy′
⇐⇒ gy

m∏
j=1

z−1
fa = gy+∆

Eq. (6)⇐⇒ gy
m∏

j=1
z−1

fa = gyg∆ ⇐⇒
m∏

j=1
z−1

fa = g∆

6 A must know the secret key by either breaking the key agreement security or by
maliciously corrupting the user, e.g., by personally creating it.

12

In both cases, finding ∆ requires to solve a dLog problem which is assumed to
be hard. Thus, the only two cases that exist are not feasible. Therefore, it holds
Pr [Verification(σ′, y′) = 1] ≤ negl. ⊓⊔

We consider security in the setting where at most t servers are corrupted by
the adversary A, namely, assume T = {Sj1 , . . . , Sj|T |} be the set of the corrupted
servers such that |T | ≤ t. All those |T | servers are controlled by A and all users
and servers correctly execute the protocol. A has the knowledge of at most tkey

corrupted users’ secret inputs. A attempts to infer the remaining non-corrupted
users’ secret inputs. We show that the joint view of any set of less than (t + 1)
corrupted servers and any set of less than (tkey+1) corrupted users can be simulated,
given the inputs of the corrupted users and only the sum of the inputs of the
remaining users. Intuitively, this means that those users and servers learn nothing
more than their own inputs, and the sum of the other users’ inputs. Consider n users
U = {Ui}i∈[n] along with m servers S = {Sj}j∈[m], and U is partitioned into m
disjoint subsets, i.e., U = Γ1, . . . , Γm where for any j, j′ ∈ [1, m], Γj ∩ Γj′ = ∅.
Let the input of each user Ui be xi. For simplicity, we assume m divides n, and
|Γj | = n

m for j ∈ [1, m]. Assume that the group of users Γj corresponds to server
Sj . Denote by Γ 1

j , Γ 2
j , Γ 3

j , Γ 4
j the subsets of users in Γj that successfully sent their

messages to the corresponding server Sj at round 1, 2, 3 and 4 respectively, such
that Γj ⊇ Γ 1

j ⊇ Γ 2
j ⊇ Γ 3

j ⊇ Γ 4
j . For example, users in Γ 1

j \Γ 2
j are those that abort

after completing the execution of round 1 but before sending the message to Sj in
round 2. Let S ′ be the corrupted servers such that |S ′| ≤ t, and U ′ the corrupted
users such that |U ′| ≤ tkey. Let RealU

′,S′,t,tkey

U,S ({xi}Ui∈U , {Γ 1
j , Γ 2

j , Γ 3
j , Γ 4

j }j∈[1,m])
be a random variable representing the views of all corrupted users in U ′ and all
corrupted servers in S ′ after executing the above instantiated protocol, where the
randomness is over their internal randomness and the ones in the setup phase.

Theorem 3 (DEVA Security). There exists a PPT simulator Sim such that for all
t < m and tkey < ⌈ n

m⌉, U , S, U ′, S ′, {xi}Ui∈U ′ , and {Γ 1
j , Γ 2

j , Γ 3
j , Γ 4

j }j∈[1,m], such
that |S ′| ≤ t, |U ′| ≤ tkey, U ′ ⊆ U , S ′ ⊆ S, Γ 1

j ⊇ Γ 2
j ⊇ Γ 3

j ⊇ Γ 4
j for j ∈ [1, m],

and U ′ ⊂ (
⋃m

j=1 Γ 4
j), the output of Sim is computationally indistinguishable from

the output of RealU
′,S′,t,tkey

U,S , or:

RealU
′,S′,t,tkey

U,S
(
{xi}Ui∈U , {Γ 1

j , Γ 2
j , Γ 3

j , Γ 4
j }j∈[1,m]

)
c
≈ SimU ′,S′,t,tkey

U,S
(
{xi}Ui∈U ′ , aux, {Γ 1

j , Γ 2
j , Γ 3

j , Γ 4
j }j∈[1,m]

)
where, by considering Ω :=

⋃
j∈[1,m] Γ 3

j , and aux :=
∑

Ui∈Ω\U ′ xi if
∣∣Γ 4

j

∣∣ > tkey for
∀j ∈ [1, m]; otherwise aux := ⊥.

Proof (DEVA’s Security - Thm. 3). Let us construct the simulator Sim by doing
a sequence of games from the initial view of the real execution RealU

′,S′,t,tkey

U,S
such that any two consecutive games are computationally indistinguishable.

Game0: Real is exactly the joint view of the set of corrupted servers S ′ and
corrupted users U ′ in a real execution of the above instantiated protocol.

13

Game1: given the set of corrupted users U ′, let Υ 2
j := U ′ ∩Γ 2

j for all j ∈ [1, m].
In Game1, for all j ∈ [1, m], the ciphertexts that are received by honest users
Ui′ ∈ Γ 2

j \ Υ 2
j and sent from honest users Ui ∈ Γ 2

j \ Υ 2
j , are replaced with en-

cryptions of 0 instead of skKA
i,i′ , i.e., computing ci,i′ ← PKE.Enc(pkPKE

i′ , 0) instead
of ci,i′ ← PKE.Enc(pkPKE

i′ , skKA
i,i′). The IND-CPA security of the PKE encryption

scheme guarantees that this game is indistinguishable from the previous one.
Game2: for all j ∈ [1, m], when the user Ui ∈ (Γ 2

j \ Γ 3
j) \ Υ 2

j generates
shares of skKA

i , we substitute all shares of skKA
i with shares of 0 (every user

Ui in the set (Γ 2
j \ Γ 3

j) \ Υ 2
j uses a different sharing of 0), and give those

shares to the corrupted users in set Υ 2
j in Round ShareKeys, i.e., computing

skKA
i,i′ ← SS.share(tkey, 0, Ui′ , Υ 2

j) for Ui′ ∈ Υ 2
j instead of computing skKA

i,i′ ←
SS.share(tkey, skKA

i , Ui′ , Υ 2
j). The properties of Shamir’s secret sharing guarantee

that the distribution of any |U ′| shares of 0 is identical to the distribution of
an equivalent number of shares of skKA

i , making this game and the previous one
identically distributed.
Game3: for all j ∈ [1, m], for each user Ui ∈ (Γ 2

j \Γ 3
j)\Υ 2

j , instead of computing
ρi := gRi

′′ ·
∏

i′∈Γ 2
j

:i<i′ sii′ ·
∏

i′∈Γ 2
j

:i>i′ si′i
−1 and τi := gxi · gRi

′ , we compute
ρi := gζi ·

∏
i′∈Γ 2

j
:i<i′ sii′ ·

∏
i′∈Γ 2

j
:i>i′ si′i

−1 and τi := gηi , where ζi := −ηi and
ηi is sampled uniformly at random. Since Ri

′, Ri
′′ are uniformly random values,

this game and the previous one are identically distributed.
Game4: given the set of corrupted users U ′, let Υ 3

j := U ′ ∩Γ 3
j for all j ∈ [1, m].

In Game4, for all j ∈ [1, m], when user Ui ∈ Γ 3
j \Υ 3

j generates shares of skKA
i , we

substitute all shares of skKA
i with shares of 0 (every Ui ∈ Γ 3

j \Υ 3
j uses a different

sharing of 0), and give those shares to the corrupted users in set Υ 3
j in Round 2

- ShareKeys for user Ui, i.e., computing skKA
i,i′ ← SS.share(tkey, 0, Ui′ , Υ 3

j) for
Ui′ ∈ Υ 3

j . The security of the threshold secret sharing scheme guarantee that
Game4 is identically distributed as Game3.
Game5: for a fixed user Ui∗ ∈ Γ 3

j \ Υ 3
j as well as for other users Ui ∈ (Γ 3

j \
Υ 3

j) \ {Ui∗}, we substitute si∗i = sii∗ with a uniformly random value, instead of
computing the value si∗i = sii∗ ← KA.Kagree(skKA

i∗ , pkKA
i). More precisely, Sim

computes, for any user Ui ∈ (Γ 3
j \ Υ 3

j) \ {Ui∗}:

ρi := gζi

 i<i′∏
i′∈Γ 2

j
\{Ui∗ }

sii′

i>i′∏
i′∈Γ 2

j
\{Ui∗ }

si′i
−1


︸ ︷︷ ︸

ϑi

s̃ii∗ ,

where s̃ii∗ :=
{

sii∗ if i∗ > i

s−1
ii∗ if i∗ < i

and sii∗ = si∗i

14

is a random element of G, zi := ϑi · s̃ii∗ , and

ωi:=

 i<i′∏
i′∈Γ 2

j
\{Ui∗ }

pkKA
i′

i>i′∏
i′∈Γ 2

j
\{Ui∗ }

(pkKA
i′)−1

 p̃kKA
i∗ ,

where p̃kKA
i∗ :=

{
pkKA

i∗ if i∗>i

(pkKA
i∗)−1 if i∗<i

and generates Proof.DLEQ(g, ωi, pkKA
i , zi, skKA

i) using the simulator of the ZK
proof. For the fixed user Ui∗ ∈ Γ 3

j \ Υ 3
j , Sim computes,

ρi∗ :=gζi∗

 i∗<i′∏
i′∈Γ 2

j

si∗i′

i∗>i′∏
i′∈Γ 2

j

si∗i′
−1


︸ ︷︷ ︸

ϑi∗

, zi∗ :=ϑi∗ , and

ωi∗ :=
i∗<i′∏
i′∈Γ 2

j

pkKA
i∗

i∗>i′∏
i′∈Γ 2

j

(pkKA
i∗)−1

and generates Proof.DLEQ(g, ωi∗ , pkKA
i∗ , zi∗ , skKA

i∗) using the ZK proof’s simula-
tor. The DDH assumption and ZK property assure Game5 to be indistinguishable
from Game4.
Game6 or Sim: for all users Ui ∈ Γ 3

j \ Υ 3
j , instead of computing

τi := gxigRi
′
, ρi := gRi

′′

 i<i′∏
i′∈Γ 2

j

sii′

i>i′∏
i′∈Γ 2

j

si′i
−1

 = gRi
′′
· (8)

·

 i<i′∏
i′∈Γ 2

j
\(Γ 3

j
\Υ 3

j
)

sii′

i>i′∏
i′∈Γ 2

j
\(Γ 3

j
\Υ 3

j
)

si′i
−1

  i<i′∏
i′∈Γ 3

j
\Υ 3

j

sii′

i>i′∏
i′∈Γ 3

j
\Υ 3

j

si′i
−1


we compute

τi := gηi , ρi := gζi

∏
i′∈Γ 2

j
\(Γ 3

j
\Υ 3

j
):i<i′

sii′

∏
i′∈Γ 2

j
\(Γ 3

j
\Υ 3

j
):i>i′

si′i
−1 (9)

where ηi and ζi are sampled uniformly at random and are subject to∑
i∈

⋃m

j=1
(Γ 3

j
\Υ 3

j
)

(ηi + ζi) = aux =
∑

i∈
(⋃m

j=1
Γ 3

j

)
\U ′

xi

To generate the shares of an input for each user Ui ∈
⋃m

j=1(Γ 3
j \ Υ 3

j), given aux,
the simulator Sim randomly chooses x′

i such that
∑

i∈
⋃m

j=1
(Γ 3

j
\Υ 3

j
) x′

i = aux, and
shares x′

i among m servers using t-out-of-m secret sharing scheme, i.e., for each
server Sj for j ∈ [1, m], xij ← SS.share(t, x′

i, Sj , {Sj}j∈[1,m]).

15

For τi and ρi generated as in Eq. (9), it implies that, for Ξj :=
⋃m

j=1(Γ 3
j \Υ 3

j),

∏
i∈Ξj

τi · ρi =
∏

i∈Ξj

gηi · gζi ·

 i<i′∏
i′∈Γ 2

j
\(Γ 3

j
\Υ 3

j
)

sii′

i>i′∏
i′∈Γ 2

j
\(Γ 3

j
\Υ 3

j
)

si′i
−1


= g

∑
i∈Ξj

(ηi+ζi)
·

 ∏
i∈Ξj

 i<i′∏
i′∈Γ 2

j
\(Γ 3

j
\Υ 3

j
)

sii′

i>i′∏
i′∈Γ 2

j
\(Γ 3

j
\Υ 3

j
)

si′i
−1


= gaux ·

 ∏
i∈Ξj

 i<i′∏
i′∈Γ 2

j
\(Γ 3

j
\Υ 3

j
)

sii′

i>i′∏
i′∈Γ 2

j
\(Γ 3

j
\Υ 3

j
)

si′i
−1


while for honestly generated τi and ρi as Eq. (8),

it holds that
∏

i∈Ξj

τi · ρi =

=
∏

i∈Ξj

gxi+Ri
′+Ri

′′
·

 i<i′∏
i′∈Γ 2

j
\(Γ 3

j
\Υ 3

j
)

sii′

i>i′∏
i′∈Γ 2

j
\(Γ 3

j
\Υ 3

j
)

si′i
−1

 ·
·

 i<i′∏
i′∈Γ 3

j
\Υ 3

j

sii′

i>i′∏
i′∈Γ 3

j
\Υ 3

j

si′i
−1


= g

∑
i∈Ξj

xi ·

 ∏
i∈Ξj

 i<i′∏
i′∈Γ 3

j
\Υ 3

j

sii′

i>i′∏
i′∈Γ 3

j
\Υ 3

j

si′i
−1

 ·
·

 ∏
i∈Ξj

 i<i′∏
i′∈Γ 2

j
\(Γ 3

j
\Υ 3

j
)

sii′

i>i′∏
i′∈Γ 2

j
\(Γ 3

j
\Υ 3

j
)

si′i
−1


= gaux ·

 ∏
i∈Ξj

 i<i′∏
i′∈Γ 2

j
\(Γ 3

j
\Υ 3

j
)

sii′

i>i′∏
i′∈Γ 2

j
\(Γ 3

j
\Υ 3

j
)

si′i
−1


This implies that, choosing ηi and ζi uniformly at random to compute τi and

ρi as in Eq. (9) is identically distributed with computing τi and ρi as in Eq. (8).
Since for all Ui ∈ Γ 3

j \Υ 3
j , ηi and ζi are sampled uniformly at random, to generate

τi and ρi, the simulator Sim does not need the knowledge of individual xi for
Ui ∈ Ξj but, instead, their sum

∑
i∈Ξj

xi = aux is sufficient for the simulation.
This implies the indistinguishability between Game5 and Game6. ⊓⊔

5 Evaluation

This section describes several experimental results from the implementation of our
DEVA protocol. We explain the different findings of DEVA, and provide comparison

16

to prior work of VerifyNet by Xu et al. [21]. We got our protocol’s experimental
results, by implementing a prototype in Python 3.8.3. The execution of the tests
was on MacOS 10.14.6 over a MacBookPro (2017) with processor Intel i7-7820HQ
CPU @ 2.9GHz, with 16GB LPDDR3 2133MHz RAM, 1MB L2 cache and 8MB
L3 cache. We used Diffie-Hellman over the elliptic curve secp256k1 for the key
agreement, the Shamir’s secret sharing scheme as an additive homomorphic secret
sharing scheme, and RSA-2048 as a public key encryption scheme. The execution
time provided is expressed in milliseconds (ms), while the bandwidth is presented in
kilobytes (kB). The source code of our protocol is publicly released7.

5.1 Implementation analysis

In this subsection, we explore how our DEVA protocol performs when considering
different parameters, e.g., number of users, number of servers or the amount of
dropout users and how this affects the communication bandwidth of the protocol
and the execution time required.

We are interested in (i) each user’s execution time and the output data size in
relation to the amount of employed servers but also to a different percent of dropout
users; (ii) each server’s execution time and input data size w.r.t. the amount of users
and the percentage of dropout users; (iii) the verification’s execution time and the
data input size in relation to the amount of users, servers and the number of dropout
users considered; and lastly, (iv) the total communication bandwidth in relation to
the amount of users, servers and number of users that have dropped out.

We describe how our DEVA protocol performs and explain its behavior in each
case. The results for the different costs considered per user or per server include all
the rounds of the protocol (excluding Round 1). Specifically for the server execution
time the results contain the cost just from Round 4 where the aggregation takes
place, since no other computation is performed elsewhere by the server.
Execution and communication cost analysis per user. Our decentralized protocol
employs multiple servers for the computation to achieve less computation time per
user which is shown to be the case in Fig. 1. In fact, in this figure, it is clear that

0% Dropout

0

50

100

150

200

250

300

350

400

450

2 4 6 8 10

Servers

T
o
ta

l
U

s
e
r

T
im

e
 (

m
s
)

30% Dropout

0

50

100

150

200

250

300

350

400

450

2 4 6 8 10

Servers

T
o
ta

l
U

s
e
r

T
im

e
 (

m
s
)

100

200

300

400

500
Users

Figure 1. User execution time for 0% and 30% of dropout users.

when the amount of servers is increased, the required execution time for each user
decreases. We also observe that when we consider more users, the execution time
7 https://github.com/tsaloligeorgia/DEVA_code.git

17

https://github.com/tsaloligeorgia/DEVA_code.git

increases, which is expected since, in that case, each user belongs to a bigger disjoint
subset Γj ; therefore, needs to exchange information within a bigger set of users.
Lastly, comparing the two scenarios of dropout, 0% and 30% respectively, we notice
minor differences.This happens because the dropout of the users, in the experiments,
occurs in Round 3, where the computational costly operations that the user performs
are already made. We should clarify here that, in our implementation, dropout takes
place at that point of the DEVA protocol with the aim to illustrate the maximum
computation time from the user side. Regarding the communication bandwidth that
each user has in our DEVA protocol, we expect that the employment of multiple
servers results in smaller communication cost for each user. This is because when
the protocol uses more servers, less amount of users are connecting to a single
server; thus, for e.g., a single user exchanges shares of keys with less users. This
expectation is represented in the Fig. 2. Additionally, the figure shows that when
dropouts of users occur, less output data are given by each user; which is reasonable
since less users are active in that case. Finally, when more users participate in the
DEVA protocol, more data communication is required from each user because of the
exchange of keys between the users.

0% Dropout

10

20

30

40

50

60

70

80

90

100

110

120

2 4 6 8 10

Servers

T
o
ta

l
U

s
e
r

D
a
ta

 O
u
t
(k

B
) 30% Dropout

10

20

30

40

50

60

70

80

2 4 6 8 10

Servers

T
o
ta

l
U

s
e
r

D
a
ta

 O
u
t
(k

B
)

100

200

300

400

500
Users

Figure 2. User output data for 0% and 30% of dropout users.

Execution and communication cost analysis per server. The execution time
required during the DEVA protocol per server depends on the number of servers
that participate in the protocol. More precisely, a big amount of servers partici-
pating, offloads the execution time required for each server. On the other hand,
the amount of users can affect the time cost of the server in two ways. Firstly,
more users require more execution time for the server since each of them handles
more computations (since each server handles n

m users when it comes to key shar-
ing (Round 2)). Secondly, when there is a user dropout, servers need to compute,
among other values, the missing keys from the dropout users as well as the proof
Proof.DLEQ(g, ωi′ , pkKA

i′ , zi′ , skKA
i′) for each of them; thus, requiring more execution

time. The expected behavior of DEVA is illustrated in Fig. 3. The bandwidth cost of
each server is easily explained. Less data are received when dropouts of users occur
(less users send data to each server). Our experiments show a small difference due to
when the dropout happens in the implementation, as we have previously mentioned.
Similarly, when more servers are employed, each server receives less data because it
handles less users. Our expectations are clearly depicted in Fig. 4.

18

0% Dropout

0

5

10

15

20

25

30

35

100 150 200 250 300 350 400 450 500

Users

T
o

ta
l
S

e
rv

e
r

T
im

e
 (

m
s
) 30% Dropout

0

5000

10000

15000

20000

25000

30000

35000

40000

100 150 200 250 300 350 400 450 500

Users

T
o

ta
l
S

e
rv

e
r

T
im

e
 (

m
s
)

2

4

6

8

10
Servers

Figure 3. Server execution time for 0% and 30% of dropout users.

0% Dropout

0

2500

5000

7500

10000

12500

15000

17500

20000

22500

25000

100 150 200 250 300 350 400 450 500

Users

T
o

ta
l
S

e
rv

e
r

D
a

ta
 I

n
 (

k
B

) 30% Dropout

0

2500

5000

7500

10000

12500

15000

17500

20000

22500

25000

100 150 200 250 300 350 400 450 500

Users

T
o

ta
l
S

e
rv

e
r

D
a

ta
 I

n
 (

k
B

)

2

4

6

8

10
Servers

Figure 4. Server input data for 0% and 30% of dropout users.

DEVA verification time and communication cost. The verification execution
time depends on several parameters that can affect the timing. Surely, a bigger
amount of servers should not influence the verification execution time, while w.r.t.
bigger amount of users or percent of dropout users, the verification time is expected
to increase. Fig. 5 illustrates the expected behavior of our protocol, considering
500 users and 10 servers for the presented plots, respectively. Regarding the input

0

25

50

75

100

125

150

175

200

2 4 6 8 10

Servers

V
e

ri
fi
c
a

ti
o

n
 T

im
e

 (
m

s
)

0

25

50

75

100

125

150

175

200

100 150 200 250 300 350 400 450 500

Users

V
e

ri
fi
c
a

ti
o

n
 T

im
e

 (
m

s
)

0

10

20

30
% Dropout

Figure 5. Verification time of DEVA

data needed for the verification, the amount of servers does not affect the input data
needed, while bigger dropouts of users require more data. This is because for a smaller
number of active users, less public keys are received but more zero knowledge proofs
need to be checked. In fact, observe our experimental results depicted in Fig. 6.
DEVA total communication cost (bandwidth). Finally, the total bandwidth of
the DEVA protocol is shown in Fig. 7 and shows that when multiple servers are
employed the total bandwidth of DEVA decreases. Therefore, using more servers
results in less communication cost which reports precisely our expectation. Moreover,

19

50

70

90

110

130

150

170

2 4 6 8 10

Servers

V
e

ri
fi
c
a

ti
o

n
 I

n
p

u
t

D
a

ta
 (

k
B

)

10

30

50

70

90

110

130

150

170

100 150 200 250 300 350 400 450 500

Users

V
e

ri
fi
c
a

ti
o

n
 I

n
p

u
t

D
a

ta
 (

k
B

)

0

10

20

30
% Dropout

Figure 6. Verification input data of DEVA.

we observe that DEVA requires smaller communication cost for more dropout users,
demonstrating that our protocol handles dropouts very well.

0% Dropout

0e+00

1e+04

2e+04

3e+04

4e+04

5e+04

6e+04

7e+04

8e+04

9e+04

1e+05

100 150 200 250 300 350 400 450 500

Users

T
o
ta

l
B

a
n
d
w

id
th

 (
k
B

)

2

4

6

8

10
Servers

30% Dropout

0

10000

20000

30000

40000

50000

60000

70000

80000

100 150 200 250 300 350 400 450 500

Users

T
o
ta

l
B

a
n
d
w

id
th

 (
k
B

)

Figure 7. Total bandwidth of DEVA.

5.2 Comparison

In this subsection, we compare DEVA and the protocol provided by Xu et al. Ver-
ifyNet [21]. VerifyNet’s experiments are conducted on a Intel Xeon E5-2620 CPU
@ 2.10GHz, 16GB RAM running Ubuntu 18.04. To the best of our knowledge, the
authors did not publicly release their source code and, as an additional complication,
the CPUs used for running the experiment are hard to compare since Xu et al.’s ma-
chines are server-CPUs while DEVA’s experiments are obtained from a laptop-CPU.
For these reasons, we limit our comparison on just the amount of data transmitted
by the user. VerifyNet’s users have secret vectors of length K = 1000 as input to the
aggregation protocol. To fairly compare, we repeatedly execute our DEVA protocol
K times in order to achieve the same amount of aggregated bytes. We execute our
experiments in a reasonably distributed setting of m = 10 servers, threshold t = 1
and key threshold tkey = 1. In Fig. 8, we compare the amount of data transmitted
for each user in executing DEVA or VerifyNet with respect to different amounts of
users n or vector sizes K. DEVA is linearly dependent both in the amount of user
n and vector size K, while VerifyNet is linear in the vector size but quadratic in
the amount of users. This different increase factor implies that there will always be,
for a fixed vector size K, an amount of users from which our DEVA protocol is
more efficient than VerifyNet. As previously discussed, this is due to the fact that in
DEVA, the higher the amount of servers, the smaller the amount of data transmitted

20

by each user because it belongs to a smaller subset Γj , while the size of this subset
depends on the amount of servers. On the other hand, DEVA is clearly not optimal
when considering large vector-inputs. It must be observed that VerifyNet is designed
to work with vectors, key aspect of the specific comparison. DEVA is penalized since
multiple executions must be made, thus, posing the DEVA’s extension, that allows
the usage of vectors as input, an interesting future development.

0

10000

20000

30000

40000

50000

60000

70000

80000

100 200 300 400 500

Users

U
s
e

r
D

a
ta

 O
u

t
(k

B
)

VerifyNet

Our Primitive

2000

6000

10000

14000

18000

22000

26000

30000

34000

38000

42000

46000

50000

1000 1500 2000 2500 3000 3500 4000 4500 5000

Vector Size

U
s
e

r
D

a
ta

 O
u

t
(k

B
)

Figure 8. User’s data out comparison for fixed K = 1000 and n = 100.

6 Conclusion

We proposed DEVA, a secure and practical protocol that allows organizations to col-
laboratively train their model by employing multiple cloud servers. It protects users’
privacy, handles users’ dropouts that occur at any round, and provides public output
verifiability allowing anyone to check the correctness of the aggregated parameters
and thus, it provides greater transparency in the learning process. Servers are in-
dependent in DEVA and only a threshold amount of them is required to compute
the sum. We provided the execution time and bandwidth cost analysis of DEVA for
different cases. DEVA is designed to deal well with a large number of users com-
pared to the state of the art, while a future direction would be to extend our work
integrating vector size inputs.

Acknowledgement. This work was partially supported by the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation.

References

1. J. C. Benaloh. Secret sharing homomorphisms: Keeping shares of a secret secret. In
Conference on the Theory and Application of Cryptographic Techniques, Berlin, 1987.
Springer-Verlag.

2. D. Chaum and T. P. Pedersen. Wallet databases with observers. In E. F. Brickell,
editor, Advances in Cryptology — CRYPTO’ 92, pages 89–105, Berlin, Heidelberg,
1993. Springer.

3. W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE Trans. Inf.
Theory, 22(6):644–654, 1976.

21

4. K. Emura. Privacy-preserving aggregation of time-series data with public verifiability
from simple assumptions. In J. Pieprzyk and S. Suriadi, editors, Information Security
and Privacy, pages 193–213, Cham, 2017. Springer International Publishing.

5. Z. Ghodsi, T. Gu, and S. Garg. Safetynets: Verifiable execution of deep neural networks
on an untrusted cloud. In Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems, pages 4672–4681, 2017.

6. B. Hitaj, G. Ateniese, and F. Pérez-Cruz. Deep models under the GAN: information
leakage from collaborative deep learning. In Proc. of CCS, pages 603–618, 2017.

7. P. Kairouz, H. B. McMahan, B. Avent, and A. B. et al. Advances and open problems
in federated learning. CoRR, abs/1912.04977, 2019.

8. N. Koblitz. Elliptic curve cryptosystems. Mathematics of computation, 48(177):203–
209, Jan. 1987.

9. M. Krohn, M. Freedman, and D. Mazieres. On-the-fly verification of rateless erasure
codes for efficient content distribution. In IEEE Symposium on Security and Privacy,
2004. Proceedings. 2004, pages 226–240, Berkeley, CA, USA, 2004.

10. I. Leontiadis, K. Elkhiyaoui, M. Önen, and R. Molva. Puda – privacy and unforgeability
for data aggregation. In M. Reiter and D. Naccache, editors, Cryptology and Network
Security, pages 3–18, Cham, 2015. Springer International Publishing.

11. Y. Liu, S. Ma, Y. Aafer, W. Lee, J. Zhai, W. Wang, and X. Zhang. Trojaning attack on
neural networks. In 25th Annual Network and Distributed System Security Symposium,
NDSS. The Internet Society, 2018.

12. L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai. Privacy-preserving deep
learning via additively homomorphic encryption. IEEE Trans. Information Forensics
and Security, 13(5):1333–1345, 2018.

13. A. Segal, A. Marcedone, B. Kreuter, D. Ramage, H. B. McMahan, K. Seth,
K. Bonawitz, S. Patel, and V. Ivanov. Practical secure aggregation for privacy-
preserving machine learning. In CCS, 2017.

14. A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.
15. E. Shi, T.-H. Chan, E. Rieffel, R. Chow, and D. Song. Privacy-preserving aggregation

of time-series data. volume 2, 01 2011.
16. R. Shokri and V. Shmatikov. Privacy-preserving deep learning. In I. Ray, N. Li, and

C. Kruegel, editors, Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pages 1310–1321. ACM, 2015.

17. F. Tramèr and D. Boneh. Slalom: Fast, verifiable and private execution of neural
networks in trusted hardware. In Proceedings of ICLR, 2019.

18. G. Tsaloli, G. Banegas, and A. Mitrokotsa. Practical and provably secure distributed
aggregation: Verifiable additive homomorphic secret sharing. Cryptography, 4(3), 2020.

19. G. Tsaloli, B. Liang, and A. Mitrokotsa. Verifiable Homomorphic Secret Sharing. In
Provable Security (ProvSec), 2018, volume 11192, pages 40–55, Cham, 2018.

20. G. Tsaloli and A. Mitrokotsa. Sum it up: Verifiable additive homomorphic secret
sharing. In J. H. Seo, editor, Information Security and Cryptology – ICISC 2019, pages
115–132, Cham, 2020. Springer International Publishing.

21. G. Xu, H. Li, S. Liu, K. Yang, and X. Lin. Verifynet: Secure and verifiable federated
learning. IEEE Trans. Information Forensics and Security, 15:911–926, 2020.

22. W. Xu, D. Evans, and Y. Qi. Feature squeezing: Detecting adversarial examples in deep
neural networks. In 25th Annual Network and Distributed System Security Symposium,
NDSS 2018, San Diego, California, USA, 2018. The Internet Society, 2018.

23. H. Yao, C. Wang, B. Hai, and S. Zhu. Homomorphic Hash and Blockchain Based
Authentication Key Exchange Protocol for Strangers. In International Conference on
Advanced Cloud and Big Data (CBD), pages 243–248, Lanzhou, 2018.

22

	DEVA: Decentralized, Verifiable Secure Aggregation for Privacy-Preserving Learning

