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Introduction

We live in an age and society that surrounds us with information, and where our

day-to-day lives increasingly depend upon this information and our ability to manip-

ulate it.

For example, it is often taken for granted that we can control our bank accounts

from almost anywhere in the world using a combination of satellite and cellular phone

networks to talk to bank representatives, specialised wired ATM networks to with-

draw money, and the Internet for online banking services.

Sadly, whenever there are services for manipulating information that has value, there

will be unscrupulous elements in society that will seek to subvert these services for

their own benefit. This has led to the development of research into information secu-

rity.

Block ciphers combine simple operations to construct a complex encryption trans-

formation. This tradition has its roots in Shannon’s paper [Sha45] connecting cryp-

tography with information theory.

Shannon suggested building a strong cipher system out of simple components that

substantiate the so-called confusion and diffusion of data applying these components

iteratively in a number of rounds.

Each of these components, seen as a single function, would be cryptographically weak

and only their composition can be strong. Feistel [Fei73] were the first to introduce

a practical architecture based on Shannon’s concepts. The most prominent example

of a Feistel type cipher is probably the Data Encryption Standard (DES) [EG83].

Most modern block ciphers are built using components whose cryptographic strength

is evaluated in terms of the resistance offered to attacks on the whole cipher.

In particular, linear and differential properties of Boolean functions are studied for

the S-Boxes to thwart linear and differential cryptanalysis.

Little is known on similar properties to avoid trapdoors in the design of the block

cipher.
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By a trapdoor we mean the presence of a secret that, if known, allows to disclose

the cipher, i.e. to read a ciphertext without knowing the key, or to compute the

encryption key.

In the DES algorithm, no trapdoors have been found in more than 20 years, but

many users are still suspicious about the DES S-boxes. The discussion of trapdoor

issues has been directed towards individuating trapdoors in known ciphers.

A way to consider trapdoors is to employ (permutation) group theory: an iterated

block cipher can be regarded as a set of permutations of a message space.

Some properties of the group generated by the round functions of such a cipher are

known to be of cryptanalytic interest.

Kenneth Paterson [Pat99] has considered iterated block ciphers in which the group

generated by the one-round functions acts imprimitively on the message space, with

the aim of exploring the possibility that this might lead to the design of trapdoors.

In particular, Paterson constructed an example of a DES-like cipher where the group

generated by the one-round functions is imprimitive.

In [CDVS09] the authors investigated the minimal properties for the S-Boxes (and

the mixing layer) of an AES-like cipher (more precisely, a translation based cipher, or

tb cipher) to thwart the trapdoor coming from the imprimitivity action. More refined

group theory can be used to insert additional trapdoors.

In [Li03], Li observed that if V is a vector space over a finite field Fp, the symmet-

ric group Sym(V ) will contain many isomorphic copies of the affine group AGL(V ),

which are its conjugates in Sym(V ). So there are several structures (V, ◦) of a Fp-
vector space on the set V , where (V, ◦) is the abelian additive group of the vector

space. Each of these structure will yield in general a different copy AGL◦(V ) of the

affine group within Sym(V ).

Thus, if the group generated by the one-round functions of a block cipher is con-

tained in a copy of AGL(V ) this might lead to the design of trapdoors coming from

alternative vector space structure, which we call hidden sums.

The thesis main goal is to improve the bound given in Proposition 2.1.27 of [Cal15]

that counts the number of different abelian regular elementary subgroups of AGL(V )

that can generate a hidden sum with constrains on subspaces dimension. We devel-

oped a new representation of hidden sums that simplify the searching and analysing

algorithms and, with this representation, a lower bound is given in Proposition 3.3.1.
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The thesis will be developed in three main chapter:

1. Preliminaries where there will be a thorough description of the algebraic struc-

tures, theorems and definition to achieve the cryptography definitions needed

to understand the meaning of a trapdoor, as a concept and as a mathematical

construction. There will be presented the latest results that can guarantee the

absence of the hidden sum.

2. Hidden sum cardinality in which we will concentrate on mathematical ques-

tions about the hidden sums that can be created in ciphers. The thesis construct

a simpler approach using linear algebra and construct optimized algorithms that

permits to count the hidden sums, fixing different constructional dimensions of

the cipher.

3. Hidden sum algorithms where there will be presented different optimized

algorithms to build and archive new operations that are directly connected

with hidden sums.

As an additional research, we will analyse part of the modern cipher called

PRESENT ([BKL+07]) that, in principle, could hide a hidden sum trapdoor.

In the appendix additional Magma code for the different algorithms presented in

the thesis will be presented.
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Notation and preliminaries

In this chapter will be presented all the notation used in the thesis and the pre-

liminaries that define its starting point.

Details can be found in [Cal15], [Str09], [Lan93], [LN97], [Sha49], [Car11], [Car07],

The preliminaries will be divided into:

· Algebraic preliminaries including all the linear algebra and group theory

used. It will introduce all the Boolean notation to complete, correctly define

and describe the hidden sums and relative attack.

· Cryptography preliminaries, that will define the cryptographic primitivities

and the concept of security in an algebraic sense.

· Hidden sum which will contain the description of the theory developed in

[Cal15] to construct and describe the properties of the different sums used in

the hidden sum attack. There will be an example of the attack as a working

proof-of-concept.

2.1 Linear algebra and group theory terminology

In this subsection all the basic linear algebra, group theory definition and prop-

erties used in the thesis will be presented.

We denote with 1..n = {1, . . . , n} and with Fq the finite fields with q elements,

where q is a power of a prime.

If not differently indicated, we denote F = F2.

The cardinality of A will be denoted by #A or |A|.

With Fn×kq we denote the sets of all the n× k matrices with entries in Fq.
Let M be a n × m matrix. The element in the i-th row and j-th column will be

denoted by Mi,j or M [i][j].
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ei will represent the i-th canonical vector in Fq and the vectorial (sub)space gen-

erated by v1, . . . , vk will be denoted by Span{v1, . . . , vk}.

Sym(V ) and Alt(V ) will indicate the symmetric and alternating group acting on

V .

With 〈g1, . . . , gk〉 we will denote the group generated by g1, . . . , gk in Sym(V ).

The action of g on an element x will be denoted by (x)g or xg if there are no ambi-

guities.

With GL(V ) and AGL(V ) we will denote the linear and affine group of V .

Definition 2.1.1. Let G be a group acting on V .

G is called transitive if for all x, y ∈ V , exists g ∈ G such that xg = y.

G is called regular if for all x, y ∈ V , exists unique g ∈ G such that xg = y.

Note 2.1.1. G is regular if and only if G transitive and #G = #V

Definition 2.1.2. A partition B of V is G-invariant if for any B ∈ B and g ∈ G, we

have Bg ∈ B.

A partition B is trivial if B = {V } or B = {{v}|v ∈ V }.

If B is not trivial and G-invariant then B is a block system for the action of G

on V .

If there exists a block system, then we say that G is imprimitive in its action on V .

If G is not imprimitive (and it is transitive), then we say that G is primitive.

Definition 2.1.3. An element r of a ring R is called nilpotent if rn = 0 for some

n ≥ 1.

r ∈ R is called unipotent if r − 1 is nilpotent, so (r − 1)n = 0 for some n ≥ 1.

Note 2.1.2. Let G ⊆ GL(V ) be a subgroup of unipotent permutations. Then G is

called unipotent.

Definition 2.1.4. An element k ∈ GL(V ) is said upper triangular in a basis

v1, . . . , vn if

∀i ∈ 1..n. vik − vi ∈ Span{vi+1, . . . , vn}
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The upper triangular matrices in the canonical basis are called upper unitriangular

matrices. We denote with U(V ) the upper unitriangular matrices group.

Theorem 2.1.1. Let G be a group consisting of unipotent matrices. Then there is a

basis in which all elements of G are upper triangular.

Define the set of invertible and symmetrical n × n matrices over a finite field K
with null-diagonal as

Sym0-GLn(K) :=

{
x ∈ GLn(K)

∣∣∣∣∣ x has null diagonal, and

x is symmetric

}

Theorem 2.1.2 (Thm. 2 [Mac69] ). Let Fq be a finite fields with q = pk and p prime,

k > 0.

Then the number of symmetric invertible matrices is

sym(n) = q(
n+1
2 )
dn
2
e∏

j=1

(
1− q1−2j

)

Theorem 2.1.3 (Thm. 3.3 [LLM+10]). Let Fq be a finite fields with q = pk and p

prime, k > 0.

When n is even, the number of (n − 1) × (n − 1) symmetric invertible matrices is

equal to the number of n× n symmetric invertible matrices with zero diagonal.

sym(n− 1) = sym0(n)

Definition 2.1.5. Let M ∈ Fn×nq be a n× n matrix with entries in Fq.
M will be called skew-symmetric if Mi,j = −Mj,i for all i, j ∈ 1..n.

If Char(Fq) = 2, then M need to have Mi,i = 0 for i ∈ 1..n.

Observe that the first condition impose that the principal diagonal is null for field

with characteristic different from 2.

Remark 2.1.1. There is no skew-symmetric invertible matrix M of dimension n odd

over any field F .
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Proof. The proof is described in [Bi14] and formally in [MMMM13].

From the Leibniz formula for determinants we have

detM =
∑

σ∈Sym(n)

sgn(σ)
n∏
i=1

Mi,σ(i)

Now, we have ∏
Mi,σ−1(i) =

∏
Mσ(i),i = (−1)n

∏
Mi,σ(i)

and that every permutation has the same sign of its inverse. So for n odd, every per-

mutation cancels with its inverse in the Leibniz expansion except for the permutation

that are their own inverse.

These are the product of disjoint transposition and, since n being odd, there must be

a fixed point. So there will be a Mi,i in the expansion and so, from the fact that M

has the diagonal equals zero, it will not contribute in the expansion and we obtain

detM = 0.

Remark 2.1.2.

In a field Fq with characteristic 2, skew-matrices are symmetric invertible matrices.

Proof.

Note that in characteristic 2, we have that x = −x for every x ∈ Fq.
From the definition of skew-matrices, we have that for M skew-matrix is invertible

and

Mi,j = −Mj,i = Mj,i

and so M is also symmetric and invertible.

Corollary 2.1.1. Let n odd. There are no symmetric invertible n × n matrix with

null diagonal and entries in Fq with characteristic 2.

Proof.

Suppose exists M being a symmetric invertible n× n matrix in Fn×nq .

From the previous observation, M is a invertible skew-matrix. Because n is odd and

the Remark 2.1.1, there are no invertible

Example 2.1.1. The reason to request the null-diagonal is mandatory to allow the

correctness of the observations done.

Many books do not consider the cases where Char(Fq) = 2 and so they only consider
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as a defining condition for a skew-matrix A that Ai,j = −Aj,i. But for characteristic

equals 2, we have to add the null-diagonal condition to allow the general skew-matrices

theorems and observation to be true.

For example, let n = 3 and Fq = F2.

Consider the matrix

π =

1 0 0

0 0 1

0 1 0


It is trivial that π is a symmetric invertible matrix with not null-diagonal.

If we drop the null-diagonal condition, as a lot of books do, it is also skew symmetric.

We obtain some contradiction as π is a skew-matrix with n odd because, if we consider

the proof of Remark 2.1.1, the determinant does not nullify with M because M1,1 6= 0.

2.2 Boolean functions terminology

Boolean functions are a basic tool that permits to describe cryptography-primitives

in a strong algebraic form.

In this subsection some basic definitions and notions will be reported.

Definition 2.2.1. Let n ∈ N \ {0}.
A Boolean function (B.f.) is a function f : Fn → F.

The set of all the Boolean function will be denoted by Bn.

Each B.f. can be written in an unique way as a polynomial in F[X] = F[x1, · · · , xn]

as

f(X) =
∑
S⊆1..n

aSXS XS =
∏
i∈S

xi

This representation is called Algebraic Normal Form (ANF).

· The algebraic degree of a B.f. f coincides with the degree of its ANF

deg(f) = max{#S : aS 6= 0}
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· Let An be the set of all affine functions Fn → F as the subset of the function

in Bn with degree less than or equal to 1.

The ANF of a function α ∈ An is α =
∑n

i=1 αixi + α0

· Let F2n = {v1, . . . , v2n}. f = (f(v1), . . . , f(v2n)) ∈ F2n is called the value

vector of f .

· The distance between two B.f. is the Hamming distance between their values

vectors

d(f, g) = #{i|f(vi) 6= g(vi)}

· The non-linearity of a B.f. f is the minimum distance between f and any

affine function

N(f) = d(f,An)

· Covering Radius Bound

N(f) ≤ 2n−1 − 1

2
2
n
2

· If a function f equals the covering radius bound, it is called bent.

· f is balanced if #f−1(0) = #f−1(1) = 2n−1

Definition 2.2.2. Let n,m ∈ N \ {0}.
A vectorial Boolean function (v.B.f.) is a function F : Fn → Fm.

If we consider v ∈ Fn, we call the v component of F as x→< v, f(x) > where

< ·, · > is the standard scalar product.

Every component is a Boolean function and will denote the v component of F as Fv.

· F a v.B.f.

degF = max
v∈Fn2

deg(Fv)

· The non-linearity of a v.B.f F is

N(f) = min
v∈Fn

N(Fv)

· F v.B.f as F : Fn → Fm with n,m ≥ 1.

F is called balanced if for any a, b ∈ Fm

#F−1(a) = #F−1(b) = 2n−m
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· A v.B.f. is balanced if and only if all the components are balanced.

A permutation is always balanced.

Definition 2.2.3. Let f be a v.B.f..

f̂u(x) := f(x+ u) + f(x)

is called the derivative of f with respect to u.

We report some different measures of non-linearity.

· Let m,n ≥ 1. f : Fn → Fm. For any a ∈ Fn and b ∈ Fm we define

δf (a, b) := #{x ∈ Fn|f̂a(x) = b}

The differential uniformity of f is

δ(f) = max
a∈Fn\{0},b∈Fm

δf (a, b)

f is said to be δ-differentially uniform if δ = δ(f).

The smaller the δ, the highest the non-linearity of the function.

· If δ = 2, then the function is called Almost Perfect Non-linear (APN)

· Let f a v.B.f.. f is weakly δ-differentially uniform if

∀a ∈ Fn \ {0}. # Im(f̂a) >
2n−1

δ

If f is 2-weakly differential, f is called weakly APN.

· If f v.B.f. is δ-differentially uniform, then f is weakly δ-differentially uniform.

Definition 2.2.4. Let f v.B.f. such that f(0) = 0.

A function f is l-anti-invariant if for any subspace U ⊆ Fn2 such that f(U) = U we

have dim(U) < n− l or U = Fn2

Definition 2.2.5. Let f v.B.f. such that f(0) = 0.

A function f is strongly l-anti-invariant if for any two subspace U,W ⊆ Fn2 such

that f(U) = W we have dim(U) = dim(W ) < n− l or U = W = Fn2

11



Definition 2.2.6. Let f a v.B.f..

n̂(f) = max
a∈Fn2 \{0}

#{v ∈ Fn2 \ {0}|deg(< v, f̂a >) = 0}

It is possible to define different equivalence relations over v.B.f..

Definition 2.2.7. Two permutations f, g : Fn → Fn are affine equivalent if there

exists γ1, γ2 ∈ AGL(V ) such that (x)g = (x)γ2fγ1.

Properties that are invariant under the action of the affine group are called affine

invariant. For example, the following are affine invariant:

• Non-linearity

• Algebraic Degree

• Differential uniformity

• Weakly differential uniformity

• n̂(f)

Definition 2.2.8. A v.B.f f is called anti-crooked (AC) if for each a ∈ V \ {0}
the set

Im(f̂a) = {f(x+ a) + f(x)|x ∈ V }

is not an affine subspace of V .

In [Cal15] are present a detailed description of properties that an AC function has

with respect the non linearity.

Corollary 2.2.1 (3.1.7 [Cal15]).

Let f be a vBf. If n̂(f) = 0 then f is AC.

Lemma 2.2.1 (3.1.10 [Cal15]).

If f is AC, then f−1 is not necessarily AC.

12



2.3 Cryptographic preliminaries

In this section, block ciphers will be defined along with the meaning of a secure

block cipher.

References about Cryptography can be found in [Sti02], [RD82], [CW09].

It is usal to formally describe a cryptosystem as the abstract concept of what a system

needs to have to be a cryptographic system.

Definition 2.3.1. A cryptosystem is a pair (M,K) where

· M is a finite set of possible messages; the union of P for plaintexts and C for

ciphertexts.

· K is a finite set of possible keys

· for any k ∈ K, we have an encryption and decryption function

φk : P → C ψj : C → P φk, ψj ∈ Sym(M) ψk = φ−1j

The general cryptosystem definition can be divided into two formal classes:

• Symmetric key in which j = k and so φk = ψ−1k .

In this class the encryption and decryption has to be made with the same key.

• Asymmetric key in which j 6= k and so φk 6= ψ−1k .

This class is meant to have a couple of keys working together: one encrypts and

the other decrypts.

This division allows to develop different use of the cryptosystem.

For example, in an asymmetric key cryptosystem we can publish φk and allow everyone

to crypt some information while only the owner of ψj can decrypt the message.

2.3.1 Block Ciphers

Block ciphers form an important class of cryptosystem in symmetric key cryptog-

raphy.

Following the most used structure in modern ciphers,the plaintext space can be

considered as coinciding with the ciphertext space.

Without lost of generality, it is possible to consider Ω = P = C = Frq and K = Flq
with l ≥ r ≥ 1. Thus adapting the previous definitions as follows:
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Definition 2.3.2. Let l, r be natural numbers. Let φ be any function as

φ : Frq × Flq → Frq

For any k ∈ Flq, denote φk as the function

φk : Frq → Frq φk(x) = φ(x, k)

φ is an algebraic block cipher (or just block cipher) if φk is a permutation of Frq
for all k ∈ Flq.

By this definition:

Definition 2.3.3. A block cipher is a indexed set of permutation Flq → Sym(Frq).
Any key k ∈ K induces a permutation φk on M.

It is possible to define a more general structure:

Definition 2.3.4. Let φ an algebraic block cipher. Let ξ : Frq × Flq → Frq a indexed

set of permutation. Let N ∈ N \ 0.

An iterated block cipher is a block cipher in which

φk =©N
i=1ξki = ξk1 · · · ξkN

and ki are obtained in an unique way from k.

It is also defined as a N -round iterated block cipher.

Most of the modern block ciphers are iterated ciphers: they are obtained by com-

posing a finite number N of rounds.

In each round1 the iterated ciphers perform a non-linear substitution operation, that

we call S-Box, on disjoint parts of the input. This provide the “confusion” by Shan-

non terminology.

After that, the cipher does a permutation, usually a linear transformation, on the

whole data that provide “diffusion”.

Defining the concept of confusion and diffusion is hard.

The main idea of diffusion consists in spreading the influence of a part of the input

(the plaintext and key) to all the parts of the ciphertext.

1Except possibly for a couple which may be different.
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The main idea of confusion consist in eliminating any clue between plaintext-key and

the ciphertext.

This process is called round and the process performed in a round forms the

round function.

For every j ∈ 1..N , the j-th round take as input the j−1-th round output and a sub-

key k(j) derived from a master key k. These keys are generated by a key schedule

that is a public algorithm, which strongly depends on the cipher, that construct N+1

sub-keys.

It is possible to formalize block ciphers in different ways. Let us consider the

definition given in [CDS08] that can define a class large enough to include some

common ciphers such as PRESENT ([BKL+07]), AES ([DR99],[DR02]), SERPENT

([BAK98]) but with enough algebraic structure to allow security proofs.

Let V = Fr with r = mb and b ≥ 2. V is a direct sum V = V1 ⊕ · · · ⊕ Vb where

each Vi has dimension m.

For any v ∈ V , we will write v = v1 ⊕ · · · ⊕ vb with vi ∈ Vi and we will consider the

projection πi : V → Vi mapping v → vi.

Any γ ∈ Sym(V ) that acts as xγ = x1γ1 ⊕ · · · ⊕ xbγb for some γi ∈ Sym(Vi), is a

bricklayer transformation or parallel map and any γi is a brick.

Traditionally, γi is called S-Box and γ is a parallel S-Box.

A linear map λ : V → V is usually called Mixing-Layer.

Let σv : x→ x+ v the translation by v.

For any I ⊂ 1..b with I 6= ∅ or 1..b; we define ⊕i∈IVi a wall.

Definition 2.3.5. A linear map λ ∈ GL(V ) is a proper mixing layer if no wall is

invariant under λ.

Now it is possible to characterize the translation-based class by the following

definition.

Definition 2.3.6. A block cipher C = {φk|k ∈ K} over F2 is called translation

based (tb) if:
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• it is the composition of a finite number of rounds, such that any round ρk,h can

be written as γλσu where

· γ is a round-dependent bricklayer trasformation which does not depend on

k

· λ is a round-dependent linear map which does not depend on k

· u is in V and depends on both k and the round. u is called round key

• For at least one round, at the same time

· λ is proper

· the map K → V given by k → u is surjective

It is called a proper round.

It is now important to define “when a block cipher is secure”. Here are several

criteria that contribute to the evaluation of a cipher:

• Security

The security of a block cipher is highly dependent on the properties of the

different components such as the substitution layer and the linear (or affine)

transformation.

However, there is no mathematical method to prove the security of a given

block cipher, although it is sometimes possible to prove the insecurity of such

a cipher.

For this reason, to evaluate security it is often considered the practical se-

curity. According to this concept, a cipher is secure if the best-known attack

requires too many resources with respect a suitable and acceptable margin.

Testing the cipher with known attack(s) and pondering the different outcomes

will result in a global security index.

It is impossible to predict the security of a cipher with respect to yet unknown

attacks.

• Efficency

It refers to the amount of computation and memory used to perform φ or ψ.

In fact, the goal is having really optimized computation that require the mini-

mum amount of memory and time and are easily implementable if hardware or

software.
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• Flexibility

Flexibility is the capacity of the block cipher to be used in different context

maintaining its security.

It is important since a block cipher can be used as a building block in various

cryptographic constructions like a hash function, an authentication code or a

stream cipher. Or it can be necessary to expand or reduce the plaintext/key

space for practical reasons.

In a cryptoanalytic scenario, it is vital to define all the possible attacks that a

block cipher is able to withstand..

We can subdivide the attacks by modes or types of attack:

• by modes of attack, we define the strategy of a possible attacker. Some of

these modes, ordered from the most practical to the most hypothetical, are

· Ciphertext-only : the attacker tries to deduce information about the key (or

plaintext) starting from the knowledge of several ciphertext and, usually,

assuming some properties about the distribution of the plaintext. This is

a unlikely scenario for modern block cipher.

· Known-plaintext : the attacker knows a certain set of couple plain-ciphertext.

In this scenario, the attacker can search for redundancy in the pairs or it

can analyse the distribution of the cipher. Linear cryptoanalysis is a typi-

cal example of such an attack (see [Mat94]).

· Chosen-plaintext or chosen-ciphertext : the attacker has the ability to con-

struct the set of known-pair. The aim is to exploit the block cipher and

obtain information from the chosen-pairs. Differential cryptoanalysis is a

typical example (see [AC09]).

· Adaptive chosen-plaintext or ciphertext : the attacker has the ability to

chose new plaintext (or ciphertext) to cipher depending on the information

gained during the attack.

· Combined chosen-plaintext and chosen-ciphertext : is ad adaptive attack

where the attacker can encrypt or decrypt arbitrary messages as he desire.

· Related-key : the attacker knows (or can impose) additionally mathematical

relations between the keys used for encryption, but not their values. It can

be practical in a scenario where the block cipher is used as a building brick,

such in hash functions.

• by types of attack, we describe the output or reason of the attack. Graded

from the least favourable to the most, they are:
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· Distinguishing attack : the attacker is able to tell whether the attacked

block cipher is a random permutation or it is a permutation described by

a φk.

Modern block cipher are designed to model a random permutation. If a

block cipher is weak to a distinguishing attack, it may be present a struc-

tural flaws of the cipher that might be transformed into a more powerful

attack.

· Local deduction: the attacker is able to find the plaintext of an intercepted

ciphertext which he did not obtain from the legitimate sender. In other

words, the attacker knows a set of likely plaintext : if this set is small, the

block cipher can be broken.

· Partial Key Recovery : the attacker can get some information abount the

key k like some bits or the relations and structure of the key.

· Global deduction: the attacker is able to construct φk, ψk without the

knowledge of the key k.

· Key recovery : the attacker is able to recover the master key k. The cipher

is totally broken.

Some additional parameters are basilar to compare the effectiveness of the attack:

• Time complexity : it measure the computational processing required to perform

an attack. Usually, the choice of the computational unit is done to compare the

attack with an exhaustive key search.

• Data complexity : it is the number of collected data (ciphertexts, known or

chosen plaintexts) required to perform an attack according to the model.

• Success probability : it measures the frequency at which the attack is successful

when repeated a certain number of times in a statistically independent way

• Memory complexity : it measures the amount of memory units necessary to store

pre-computed/obtained data necessary to perform the attack

An attack is considered successful if the time/data/memory complexity is signifi-

cantly smaller than 2l with #K = Fl and a success probability close to 1.
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2.3.2 Trapdoors and group theoretic properties

In this subsection we will describe “what is a trapdoor” and then define the alge-

braic properties that exist in the block cipher model used.

Other references can be found in [RP97], [MPW94], [Pat99].

We can define a trapdoor for a block cipher is a hidden structure that, with the

knowledge of this structure, allows an attacker to obtain information on the key or

to decrypt certain ciphertexts.

Trapdoors are usually dived into:

• Full trapdoor is some secret information that allows an attacker to acquire the

key, or a global deduction of it, by using a small number of known plaintexts,

no matter which they are or what the key is.

• Partial trapdoor does not necessarily work with all the keys or plaintexts.

• Detectable (or undetectable) trapdoor define the trapdoor that are com-

putationally feasible (or infeasible) to be found even if one knows the general

form of the trapdoor.

The hidden sum trapdoor is directly constructed over some group properties that

now we will describe and explain.

Let C = {φk|k ∈ K} be a tb cipher with plaintext space V = Fd for some d ∈ N.

The goal is to determine the group Γ(C) =< φk|k ∈ K >⊆ Sym(V ) generated by the

permutation φk.

Unfortunately, for many classical cases such AES, SERPENT, DES ([Des77]), this

appears to be a difficult problem.

For this reason, we define for each h, the round function

Γh(C) = 〈φk,h|k ∈ K〉 ⊆ Sym(V ) φk,h = γhλhσk,h

and

Γ∞(C) = 〈Γh(C)|h ∈ 1..l〉

Remark 2.3.1.

Γ∞(C) = 〈γhλhσk,h|h ∈ 1..l, k ∈ K〉

As we can observe, 〈σk,h〉 = T+ and so we have T+ ⊆ Γ∞(C).
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It is decisive to change the goal stated before, to determine Γ∞(C).
That is the permutation group generated by its round functions with the key varying

in the key space.

A weakness of that group might reveal weaknesses of the cipher.

Paterson, in [Pat99], showed that if this group is imprimitive, then it is possible

to embed a trapdoor in the cipher.

He developed a DES-like cipher with such a trapdoor.

The attack that can be constructed is a chosen-plaintext.

Paterson’s attack needs that the round ξ of an n-round iterated block cipher φ

acts imprimitively on the space messageM (seen as a vector space) and let Y1, . . . , Yr

a not-trivial block system for ξ.

Suppose that it is easy, given a message m ∈M, to compute the i-th block in which

m ∈ Yi.
Let k1, . . . , kt the key used in the cipher on the different rounds.

Suppose we choose a set mi such that mi ∈ Yi for every i and obtain the ciphertext

ci.

Now, from the imprimitivity of φ we have

ci = miφ ∈ Yj Yj = Yiφ

Now, given any other ciphertext c, we compute the l in which c ∈ Yl. We have

that m ∈ Ylφ−1.
So r chosen plaintexts determine that the message corresponded to any ciphertext

must lie in a set of dimension #M
r

.

For a translation based cipher, in [CDS08] the authors provided conditions on

the S-boxes which ensure that the group Γ∞ is primitive using boolean functions

properties.

Theorem 2.3.1 ([CDS08]).

Let C be a tb cipher, with h a proper round and r ∈ 1..m
2

and r < m
2

.

If any brick of γh is

• weakly 2r-uniform

• strongly r-anti-invariant
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then Γh(C) is primitive (and hence Γ∞(C) is primitive).

In [CDVS09], some additional condition on S-boxes of a tb cipher are established

such that Γ∞(C) is either Alt(V ) or Sym(V ) obtaining the following theorem.

Theorem 2.3.2 ([CDVS09]).

Let d = mn with m,n > 1. Let C be a tb cipher such that

• C satisfies the hypothesis of the theorem in [CDS08]

• γ is Anti-Crooked, so for all non-zero a ∈ Vi, Im(γ̂ia) is not a coset of a subspace

of Vi

Then the group Γ∞(C) is either Alt(V ) or Sym(V ).

In particular, we are interested on creating an algebraic attack that will be con-

structed in the next sections.

The theorem gives a strong characterisation that ensure us that the cipher is Alt or

Sym.

Corollary 2.3.1. Let C be a N-round translation based cipher with γh permutation

box of the round h.

If the round h has γh AC, then Γ∞(C) * AGL◦ for any operation ◦.

2.4 Hidden Sum

The concept behind the research of hidden sum trapdoor is connected by the

first point of the Li theorem ([Li03]), which is a particular case of the O’Nan-Scott

theorem.

Theorem 2.4.1 ([Li03]). Let G be a primitive group of degree pb with b > 1. Suppose

G contains a regular abelian subgroup T . Then G is one of the following.

• Affine. G ⊆ AGL(e, p) for some prime p and e ≥ 1

• Wreath product

• Almost simple
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We are interested in the affine case because Li observed that if V is a vector space

over a finite field Fp, Sym(V ) contains many isomorphic copies of AGL(V ) which are

conjugates in Sym(V ). A new abelian additive group (V, ◦) will yield in general a

different copy AGL(V, ◦) of the affine group.

This new structure (V, ◦) will be our hidden sum.

Note that if h is a proper round of a tb cipher C, then Γh(C) =< γhλh, T (V ) > where

T (V ) is the translation group.

Thus, it could be that Γ∞ is contained in a isomorphic copy of AGL(V ) and so

happens that the abelian additive group (V, ◦) is a hidden sum trapdoor.

2.4.1 Radical ring

For abelian regular subgroups of the affine group, in [CDS05] the authors give an

easy description of these in terms of commutative associative algebra that one can

impose on the vector space (V,+).

Definition 2.4.1. A Jacobson radical ring is a ring (V,+, ·) in which every element

is invertible with respect to the circle operation

x ◦ y = x+ y + x · y

so that (V, ◦) is a group.

The operation ◦ may induce, or not, a vector space structure on V .

Theorem 2.4.2 ([CDS05]). Let K be any field and (V,+) a vector space of any

dimension over K.

Then there is a one-to-one correspondence between

1. (not necessarily elementary) abelian regular subgroups T of AGL(V,+)

2. commutative, associative K-algebra structure (V,+, ·) that one can impose on

the vector space structure (V,+) such that the resulting ring is radical

In this correspondence, isomorphism classes of K-algebras corresponds to conjugacy

classes of abelian-subgroups of AGL(V,+) where the conjugation is under the action

of GL(V,+).

We will denote with T+ the translation group and a σa ∈ T+ acts as xσa = x+ a.
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We have a relation between T◦ and AGL(V, ◦) as that AGL(V, ◦) is the normalizer

of T◦ with respect to Sym(V ).

Indeed, we have AGL(V,+) to be the normalizer of T+ and AGL(V,+) and T+ are

the isomorphic images of AGL(V, ◦) and T◦ respectively.

With 1V we will denote the identity map of V . We clearly have that 1V ∈ AGL(V, ◦)
for any operation ◦.

As the affine group is the semi-direct product AGL(V,+) = GL(V,+)nT+, every

τv ∈ AGL+(V ) can be written as τv = kvσv with k ∈ GL(V,+) and σv ∈ T+.

We can define Ω(T◦) = {ka|a ∈ V } ⊆ GL(V,+) and the set

U(T ) = {a|τa = σa}

We have that U(T ) is a subspace of V and if T = T◦ for some operation ◦, then U(T◦)

is not empty by the lemma:

Lemma 2.4.3 ([CDS05]). Let T ⊆ AGL+(V ) be a regular subgroup. Then if V is

finite, T+ ∩ T is non-trivial.

and follows

Proposition 2.4.4 (2.1.6 in [Cal15]). Let T ⊆ AGL(V,+) be an elementary abelian

regular subgroup. If T 6= T+, then dim(U(T )) ∈ 1..(n− 2).

The structure of T◦ that we need to find to create the hidden sums, has to respect

Lemma 2.4.5 (2.1.11 in [Cal15]). Let V = Fn and T ⊆ AGL(V,+) be an elementary

abelian regular subgroup. Then for each a ∈ V , ka has order 2 and it is unipotent.

In particular Ω(T ) is a unipotent subgroup of GL(V,+).

So we have that k2a = 1V .

Lemma 2.4.6 (2.1.13 in [Cal15]). Let V = Kn, K any field. Let G ⊆ GL(V ) be a

unipotent subgroup and let W ⊆ V be a subspace such that for all v ∈ W and g ∈ G,

vg = v; so G is contained in the stabilizer of W .

Then all elements of G are upper triangular in a basis {v1, . . . , vn−k+1, . . . , vn} where

{vn−k+1, . . . , vn} is any basis of W .

So we have that ka is upper triangular for every a ∈ V .
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Corollary 2.4.1. If we have T such that Ω(T ) is a unipotent group, then all elements

of Ω(T ) are upper triangular in a basis {v1, . . . , vn−k+1, . . . , vn} where {vn−k+1, . . . , vn}
is any basis of U(T ).

Remark 2.4.1 (Cor. 2.1.16 [Cal15]). We can conjugate T and obtain a subgroup T ∗

such that

Ω(T ∗) ⊆ U(V ) and U(T ∗) = Span{en−k+1, . . . , en} where k = dim(U(T ∗)).

So we have that exists an element in the group that conjugate the group T such

that ka’s are upper triangular and has the subspace U(T ∗) generated by the last k

vector of the canonical basis.

Theorem 2.4.7 (2.1.21 [Cal15]). Let V = Fn+kp with n ≥ 2, k ≥ 1. T◦ ⊆ AGL(V,+)

be such that U(T◦) = Span{en+1, . . . , en+k}.
Then T+ ⊆ AGL(V, ◦) if and only if for all ky ∈ Ω(T◦) there exists a matrix By ∈ Fn×kp

such that

ky =

(
In By

0 Ik

)

This theorem describes the form of the ky and imposes a condition to guarantee

T+ ⊆ AGL(V, ◦).

Note 2.4.1.

Imposing the form of Theorem 2.4.7 for the Bei we have that the canonical basis is a

basis even in the operation ◦ and that we have that T◦ ⊆ AGL+ and T+ ⊆ AGL◦.

2.4.2 Hidden Sum Attack

To embed a hidden sum trapdoor in a n-bit block cipher, we need Γ∞ ⊆ AGL(V, ◦)
for some hidden sum ◦.
As T+ ⊆ Γ∞, the first condition we need to have is T+ ⊆ AGL(V, ◦). Now consider

T◦ ⊆ AGL(V,+) such that T+ ⊆ AGL(V, ◦).

Consider dim(U(T◦)) = k ≥ 1 and let g ∈ GL(V,+) such that

U(T◦)g = Span({en−k+1, . . . , en}) = U(T4)
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where T4 = g−1T◦g.

g is an isomorphism between (V, ◦) and (V,4).

Now, from the condition on the basis, we have that {ei}i∈1..n is basis of (V,4) and

we can write v ∈ V as a linear combination with respect to the sum 4

v = 4n
i=1λiei

We can find the λi using the following algorithm described in [Cal15]:

Algorithm 2.4.1. Let as input v = (v1, · · · , vn) ∈ V .

Let λi = vi for every i ∈ 1..(n− k). Now consider v′ = vτλ1e1 . . . τ
λen−k−1
en−k−1 and let

λi = v′i i ∈ (n− k + 1)..n

Return [v] = [λi].

Let consider [v] = [λ1, . . . , λn].

Let C = {φk|k ∈ K} be a tb cipher such that Γ∞ ⊆ AGL(V, ◦) for some operation ◦
and T◦ ⊆ (V,+). Let dim(U(T◦)) = k. Let g as before.

Let φ be the encryption function with a given unknown session key k.

Mount the attack: the hidden sum attack is a global deduction, chosen plain-

text.

Chose the plaintext 0φ, v1φ, . . . , vnφ where vi = eig
−1.

Compute [0φg], [v1φg], . . . , [vnφg].

Since [0φg] = [t] is the translation vector and [eiφg] + [t] are the matrix rows, we

have

[vφg] = [vg] ·M + [t] [vφ−1g] = ([vg] + [t])M−1

for all v ∈ V .

We are able to crypt and decrypt because we reconstructed the function φ as an

affine transformation.
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Note that we only need n+1 plaintexts to reconstruct the cipher from v = 0τλ1e1 · · · τ
λn
en

and the computational cost of executing the attack is extremely low.

For this reason, we can claim

Theorem 2.4.8 (2.4.1 in [Cal15]). Hidden sum trapdoors coming from translation

groups such that T◦ ⊆ AGL(V,+) are practical full trapdoors.

Proof.

To prove the theorem, we can compare the computational complexity of the attack

with respect a brute force attack where we initially have a ciphertext and the block

cipher as a black box that just encrypts the input given.

Let assume that the input of the cipher is a n bit message block.

We assume that the encryption has a linear cost with respect the input, so O(n).2.

We consider to have constant cost O(1)3:

• Check the equality of element in the message space

• Generating matrices

• Linear algebra, i.e. multiplying matrices, sum vectors, inversion of a matrix.

• Generating the [λi], as the fact that it is just the composition of affine transfor-

mation

Trivially, the brute force attack has to check and encrypt all the message space

and so it has a total cost of O(n2n).

Now consider the hidden sum attack:

· Find [x] for the n+ 1 plaintext. Cost O(n+ 1).

· Encrypt n+ 1 plaintext in the form [λ]. Cost O((n+ 1) · n)

· Generate the affine transformation and invert the matrix. Cost O(1).

· Multiply the ciphertext and recover the plaintext. Cost O(1).

2This assumption is consistent with reality. A block cipher on a bigger message space has to

encrypt “slower” than the same block cipher with less round or smaller message space.
3All this algorithm have a polynomial complexity O(nk) for some k ∈ N
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So we obtain an approximate total cost of

O((n+ 1) + (n+ 1)n+ 1 + 1) ∼ O(n2)

which is negligible with respect the brute force attack.

Remark 2.4.2.

To use the hidden sum attack, we need to know which is the hidden sum ◦.

From the Corollary 2.3.1, if we have a round with all the γi permutation boxes to

be AC, we have that does not exists any hidden sum ◦ such that Γ∞ is contained in

AGL◦ and so we cannot use the hidden sum attack.

Remark 2.4.3. For a real-case analysis:

AES cipher has primitive group Γ∞ (see [SW08]) and its γ is Anti Crooked. So by

Theorem 2.3.2 we have that AES is either Alt or Sym and so is unaffected by the

hidden sum attack.

SERPENT cipher has some round with permutation box that is AC and other not.

Even so, it is either Alt or Sym by Corollary 2.3.1. Wernsdorf, in the NIST’s

AES Competition, proved that SERPENT is isomorphic to the alternate group (see

[Wer00]).

It was proven that a round of DES generate the alternating group (see [EG83]).

PRESENT has a not AC permutation box and so the group Γ∞ of PRESENT is

primitive, but we cannot say that PRESENT has a hidden sum. By Li’s Theorem

2.4.1, it can be AGL◦ or one of the other choice of the theorem.

To prove that PRESENT can be attacked by the hidden sum attack, it is necessary

to analyse the structure of Γ∞ to see if it is AGL◦ for some operation ◦.
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Hidden sum cardinality

In this chapter we will focus on the question:

“how many operation ◦ with dimension n+ k have exactly dimU(T◦) = k ?”.

We will start presenting the bound described in [Cal15] that uses the cardinality of

a variety constructed with some properties that the operation has to respect to then

rewrite the problem in finding the cardinality of particular sets of vectors in Fkn2 .

We will give a lower bound and compare it with the Calderini’s bound.

3.1 Variety bound

We start from the [Cal15]’s Lemma 2.1.26.

Let n > 2 and 0 < k < n − 2. For i ∈ 1..n, let ki the matrix of τei of a hidden

sum ◦, in the form of the Theorem 2.4.7, over V = Fn+k. Let kei = ki as

ki =

In×n
b
(i)
1,1 · · · b

(i)
1,k

...
. . .

...

b
(i)
n,1 · · · b

(i)
n,k

Ik



Lemma 3.1.1. Let N := n+ k and V := FN , with n ≥ 2 and k ≥ 1.

The elementary abelian regular subgroups T◦ ⊆ AGL(V,+) such that dim(U(T )) = k

and T+ ⊆ AGL(V, ◦) are [
N

k

]
2

· |V(Ik)|

where Ik is generated by

S1 ∪ S2 ∪ S3

with

S1 :=

{
n∏
i=1

k∏
j=1

(
1 +

∑
s∈S

b
(s)
i,j

)
|S ⊆ [n], S 6= ∅

}
S2 := {b(s)i,j − b

(i)
s,j|i, s ∈ [n], j ∈ [k]}
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S3 := {b(i)i,j |i ∈ [n], j ∈ [k]}

V(Ik) is the variety over F of Ik and
[
N
k

]
q

=
∏k−1

i=0
qN−i−1
qk−i−1 is the Gaussian Binomial.

The three sets define the properties of the operation ◦ which are related to the

group T◦:

1. S1: T◦ has to have U(T◦) dimension equals to k.

In the form we are considering, we have that en+1, . . . , en+k are the elements that

generate the subspace U(T◦) and so we need to have that for any v ∈ 〈e1, . . . , en〉,
Bv 6= 0. Otherwise we have that v ∈ U(T◦) and so dim(U(T◦)) = k + 1.

To achieve this goal, we need to have that, for any v ∈ 〈e1, . . . , en〉, Bv 6= 0.

To obtain Bv, consider τv = τλ1e1 · · · τ
λn
en for λi ∈ F2. We obtain:

τv =

(
In Bv

Ik

)
σv = τλ1e1 · · · τ

λn
en

= (ke1σe1)
λ1 · · · (kenσen)λn

= (kλ1e1 σ
λ1
e1

) · · · (kλnen σ
λn
en )

=

(
n∏
i=1

kλiei

)(
(σλ1e1 (kλ2e2 · · · k

λn
en )) · · · (σλn−1

en−1
(kλnen ))σλnen

)
=

(
n∏
i=1

kλiei

)(
n∏
i=1

(
σλiei

n∏
j=i

kλnej

))

=

(
n∏
i=1

kλiei

)
σv

=

(
n∏
i=1

(
In λiBei

Ik

))
σv

=

(
In

∑n
i=1 λiBei

Ik

)
σv

and so we get that Bv =
∑n

i=1 λiBei .

We only need to check that every not null linear combination, of the Bei ’s, is

not null.

2. S2: T◦ is abelian. This means that for i, j ∈ 1..n, we have eiτej = ejτei and that

means

eikej + ej = ei

(
In+k +

(
0 Bej

0 0

))
+ ej = ei + ej + ei

(
0 Bej

0 0

)
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ejkei + ei = ej

(
In+k +

(
0 Bei

0 0

))
+ ei = ei + ej + ej

(
0 Bei

0 0

)
and so the j-th row of Bei has to be equal to the i-th row of Bej

3. S3: T◦ has to be elementary and so for every i ∈ 1..n we need to have eiτei = 0.
Similarly to the previous point, we get

0 = eikei + ei = ei

(
In+k +

(
0 Bei

0 0

))
+ ei = ei + ei + ei

(
0 Bei

0 0

)
= ei

(
0 Bei

0 0

)

and so the i-th row of Bei has to be null.

At this point, a bound is given in Proposition 2.1.27:

Proposition 3.1.2. Let Ik defined as Lemma. Then

|V(Ik)| ≤

2k(
n
2) − 1−

n−2∑
r=1

(
n

r

) (n−r2 )∏
i=1

(
2k − 1

) =: µ(n, k)

To improve the bound, we search for a simpler construction that facilitate the

count of the variety.

Remark 3.1.1.

We will always drop the
[
N
k

]
2

coefficient as we will always refer to the operations ◦
that has the form described in the preliminaries (see Theorem 2.4.7).

For this reason, we can concentrate only on the Bv part of the kv matrices.

3.2 Thoughts on the matrix construction

Let consider ◦ in the form of the Theorem 2.4.7.

With this form, for any v ∈ V , τv = kvσv where kv =

(
In Bv

Ik

)
.

In particular for that form, we have that the canonical basis {ei}i∈1..(n+k) is a basis

for T◦ and so we can only considerate the matrices Bei ’s for every i ∈ 1..(n+ k).

In addiction, we have U(T◦) = Span({en+1, . . . , en+k}) and so

Ben+1 = · · · = Ben+k = 0

So we only need to concentrate on Bei ’s with i ∈ 1..n.
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Let {Bei}i∈1..n the submatrices of the canonical basis {ei}i∈1..n from which it is

possible to create the kei and so it is possible to generate T◦.

We have that, for every i, Bei is a matrix in Fn×k2 . We can see the rows of the matrix

as element in F2k .

In this way, we can see every Bei as a vector in Fn
2k

.

We can now consider the space generated by all the vectors Bei , meant as column

vectors, in a single matrix B◦ in Fn×n
2k

.

From {Bei}i∈1..n −→ B◦ :=
(
Be1 · · · Ben

)
The matrix B◦ has all the information about the operation ◦.

We can even see this matrix as a matrix in F(kn)×n as

B◦ =

(
Be1 · · · Ben

)
=



BT
e1

[1] · · · BT
en [1]

BT
e1

[2] · · · BT
en [2]

...
...

...

BT
e1

[n] · · · BT
en [n]


where BT

ei
[j] is the transposition of the j-th row of Bei .

Example 3.2.1. Let N = 5 and k = 2 and consider the operation ◦ defined by these

Bei ’s: 

Be1 =

0 0

1 1

1 1

 Be2 =

1 1

0 0

0 1



Be3 =

1 1

0 1

0 0



Be4 =

0 0

0 0

0 0

 Be5 =

0 0

0 0

0 0


Because we have that n = N − k = 2, we just need to focus on Be1 , Be2 and Be3 .

If we see the elements of the matrices as elements of F22 = {0, 1, α, α+ 1} as the field

extension where α2 = α + 1, we can rewrite the matrices as
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

Be1 =

 0

α + 1

α + 1

 Be2 =

α + 1

0

α



Be3 =

α + 1

α

0


We have that

B◦ =
(
Be1 Be2 Be3

)
=

 0 α + 1 α + 1

α + 1 0 α

α + 1 α 0


Starting from the fact that we can represent an element in F22 with an element in

F2
2, we can rewrite the elements of F22 as vectors in the vector space F2

2. Just consider

the polynomial representation of the elements in F22 and consider the coefficients as

an element in F2
2.

In our example we have

0←→ (0, 0) 1←→ (1, 0)

α←→ (0, 1) α + 1←→ (1, 1)

and so we can rewrite B◦ as

B◦ =


BT

e1 [1] BT
e2 [1] BT

e3 [1]

BT
e1 [2] BT

e2 [2] BT
e3 [2]

BT
e1 [3] BT

e2 [3] BT
e3 [3]

 =



0 1 1

0 1 1

1 0 0

1 0 1

1 0 0

1 1 0


=

 0T (α+ 1)T (α+ 1)T

(α+ 1)T 0T αT

(α+ 1)T αT 0T



With this construction, we can translate the properties that the operation has to

respect that can guarantee dim(U(T )) = k:

1. Zero-summable columns as the property that for every non-null choice of

the columns, their sum1 has to be different from zero. Otherwise we obtain that

dim(U(T )) = k + 1.

Even if we see the element of the matrix in F2k , we are not actually working in

1The sum is the bitwise-XOR in F k
2 .
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the field but use only its element representation.

For this reason, we prefer the representation in Mkn,n(F) as, in this case, the

property means that the columns are linearly independent.

2. No column has to be a null vector. Otherwise, dim(U(T )) = k + 1. It’s a

particular case of the previous point.

3. In the form of a matrix in Mn,n(F2k), the matrix B◦ is symmetric.

Indeed from the fact that ejBei = eiBej , we have that the two rows are identical

and so they will be represented with the same element in F2k .

4. In the form of a matrix in Mn,n(F2k), the matrix B◦ has, in the diagonal, all

zeros.

In fact from the fact that eikei = 0, we have that the i-th row is zero and so the

i-th row of Bei . So the elements in the diagonal has to be zero.

Remark 3.2.1. These condition are exactly the translation of the definitions of the

variety Ik:

1. The sum for every not-null set of columns is not null is the translation of the

S1 set of the ideal.

2. That the matrix is symmetric is the translation of the set S2.

3. That the matrix has the null-diagonal is the translation of the set S3.

Remark 3.2.2. We can represent the matrix B◦ generated by the Bei ’s as

• an element of Mn,n(F2k) matrix space. We have the merit of having a square,

symmetric and with null-diagonal matrix, but with a hard time checking the

zero-summable columns property.

• a matrix in Mnk,k(F2). We have that the zero-summable property can be trans-

lated in the maximal rank of B◦ but we lose the square form that is more

comfortable to check the symmetry and the null-diagonal.

For all this reason, we can state

Proposition 3.2.1. Let V vector space of dimension N = n + k and consider

k = dim(U(T◦)).
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Let consider M as the matrix obtained by the composition of the Bei as vectors in

Fn
2k

.

We have that M is a matrix in Mn,n(F2k)

Then we have

· M has a all zeros diagonal

· M is symmetric

· M has no zero-summable columns

or we can see, M has maximal rank (in the (nk)× n matrix form)

and, if we define

M := {m ∈Mn,n(Fk)|m has the conditions listed }

we have

|V(Ik)| = |M|

We basically reduced the original variety point count into the research of matrices

with defined properties in a matrix space.

Problem 3.2.1. G iven n ≥ 2 and k ≥ 1.

How many matrices m ∈Mn,n(Fk) exist that has the conditions of the proposition?

Remark 3.2.3. The matrices B◦’s are not necessarily in GLn(F2k) as we check the

linear independence in F2 and not in F2k .

Example 3.2.2.

Let k = 2 and n = 3. Consider

Be1 =

 0

α + 1

α + 1

 Be2 =

α + 1

0

α



Be3 =

α + 1

α

0


If we consider the compact representation in F4 and check the independence using

the extended field, we get that Be1 = α · (Be2 + Be3) and so the vectors are linearly
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dependent.

In our case, we are not allowed to “multiply by element of the extended field” but just

to sum the vectors. The only scalar that we can use is the one in F2.

And so we have for all c ∈ F2, Be1 6= c(Be2 +Be3). And so Be1 , Be2 , Be3 are non-zero

summable.

In fact, if we see the Mnk,n(F) representation, it is trivial that the rank is 3.

B◦ =



0 1 1

0 1 1

1 0 0

1 0 1

1 0 0

1 1 0



Recall from the preliminaries, the definition of the invertible n×n matrices in F2k

with null-diagonal:

Sym0-GLn(K) :=

{
x ∈ GLn(K)

∣∣∣∣∣ x has null diagonal, and

x is symmetric

}

We can state the trivial inclusion

Sym0-GLn(F2k) ⊆M

as we know that, for every m ∈ GLn(F2k) we have Rkm = n and in particular it

means that no linear combination of null coefficient in F2k , is null.

But we have that F2 ⊆ F2k and so there are no linear combination using coefficients

in F2.

This means that if we represent m as a (nk)×n matrix, we have that m have maximal

rank n. And so m ∈M.

3.3 Matrix Bound

We can exploit the possibility to interchange between the two representation. For

this reason we can easily state a lower bound:
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Proposition 3.3.1 (Matrix Lower Bound). Let N := n+k and V := FN , with n ≥ 2

and k ≥ 1.

Then we can define a lower bound ν(n, k) ≤ |V(Ik)| by

ν(n, k) :=


q(

n
2)
dn−1

2
e∏

j=1

(1− q1−2j) with q = 2k n even

0 n odd

Proof.

If we consider the Remark 3.2.3, we have that Sym0-GLn(F2k) ⊆M.

By this

ν(n, k) := # Sym0-GLn(F2k) ≤ #M = #V(Ik)

To count: note that ν(n, k) is composed by invertible symmetric n × n matrix

with null diagonal in F2k .

So the case n even follows directly from Theorem 2.1.3.

For the case n odd, observe that we are in characteristic 2. This means that symmetric

matrix with zero diagonal are also skew-symmetric.

And so, by Remark 2.1.1, the cardinality of the set of matrices is zero.

Corollary 3.3.1.

If k = 1 or n = 2, we get that the lower bound is the exact number of solutions.

Proof. For the case of k = 1, we have that F2k = F2. And so the conditions of the

Proposition 3.2.1 give M = Sym0-GLn(2).

Similarly, if n = 2, we have that M = Sym0-GL2(Fk)

We can see in the Table 3.1, the behaviour of the lower bound with respect the

exact number of operation and the variety bound.

The data that we can compare with the exact number is limited to n = 7 as the

algorithm that counts the exact number of operation ◦ needs a consistent time to

compute the result.
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N = n+ k k Variety Bound Exact Value Matrix Lower Bound

4 2 3 3 3

5 1 998 28 28

5 2 42 42 0

5 3 7 7 7

6 2 3969 3360 3024

6 3 462 462 0

6 4 15 15 15

7 1 32711 13888 13888

7 2 1044630 937440 0

7 3 260729 254968 228928

7 4 3990 3990 0

7 5 31 31 31

Table 3.1: Behaviour of the Matrix bound and Calderini’s bound with respect the

exact number of operations ◦ with fixed dimension N and k.
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We recall a theorem on the productory convergence criteria, corollary of the mono-

tone convergence theorem (more detail can be found in the book [Ste11]).

Lemma 3.3.2.

Let {an}n∈N ⊆ R. Then

∃ lim
n→∞

∞∏
j=1

an ⇐⇒ ∃ lim
n→∞

ln(an)

and if an ≥ 1, write it as an = 1 + pn. Then

1 +
∞∑
i=1

pn ≤
∞∏
j=1

(1 + pn) ≤ e
∑∞
i=1 pn

We now compare the Calderini’s bound and the matrix lower bound.

Proposition 3.3.3.

Let µ(n, k) be the variety bound and let ν(n, k) be the matrix bound. Let q = 2k.

Then

lim
n→∞

µ(n, k)

ν(n, k)
=
∞∏
j=1

1

(1− q1−2j)
≤ e

1
q−1

Proof.

Define

µ1(n, k) := q(
n
2) µ2(n, k) :=

n−2∑
r=1

(
n

r

) (n−r2 )∏
i=1

(q − 1)

so we can rewrite

µ(n, k) = µ1(n, k)− 1− µ2(n, k) = µ1(n, k)

(
1− 1

µ1(n, k)
− µ2(n, k)

µ1(n, k)

)
We can now rewrite and see the µ2’s asymptotic equivalence by calculating

µ2(n, k)

µ1(n, k)
=

∑n−2
r=1

(
n
r

)∏(n−r2 )
i=1 (q − 1)

µ1(n, k)

=

∑n−2
r=1

(
n
r

)
(q − 1)(

n−r
2 )

q(
n
2)
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Consider the case q = 2 (so k = 1):

µ2(n, k)

µ1(n, k)
=

∑n−2
r=1

(
n
r

)∏(n−r2 )
i=1 (2− 1)

µ1(n, k)

=

∑n−2
r=1

(
n
r

)
(2− 1)(

n−r
2 )

2(n2)

=

∑n−2
r=1

(
n
r

)
2(n2)

≤
∑n

r=0

(
n
r

)
2(n2)

=
2n

2(n2)
∼∞ 0

For the case q > 2:

µ2(n, k)

µ1(n, k)
=≤

∑n−2
r=1

(
n
r

)
(q)(

n−r
2 )

q(
n
2)

=
n−2∑
r=1

(
n

r

)
q(

n−r
2 )−(n2)

From the fact that, for every r ∈ 1..(n− 2), we have
(
n−r
2

)
≤
(
n
2

)
. We so can state

that

q(
n−r
2 )−(n2) ≤ q(

n−1
2 )−(n2) ≤ 1 ∀n ∈ N

Now:

µ2(n, k)

µ1(n, k)
≤

n−2∑
r=1

(
n

r

)
q(

n−r
2 )−(n2)

≤
n−2∑
r=1

(
n

r

)
q(

n−1
2 )−(n2)

= q
n2−3n+2−n2+n

2

(
n−2∑
r=1

(
n

r

))

≤ q−n+1

(
n∑
r=0

(
n

r

))
= q−n+12n = q

(
2

q

)n

The limit converge if and only if |2
q
| ≤ 1. In our case, q > 2 and so we have
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µ2(n, k)

µ1(n, k)
≤ q

(
2

q

)n
∼∞ 0

From basic analysis, we have that for two successions an, bn such that an �∞ bn

(an is negligible with respect to bn), then an + bn ∼∞ bn.

In our case we have

µ1(n, k) ∼∞ q(
n
2) µ2(n, k)�∞ µ1(n, k)

from which we have

µ(n, k) = µ1 − 1− µ2 ∼∞ q(
n
2) = µ1(n, k)

And so we get

µ(n, v)

ν(n, v)
∼∞

q(
n
2)

q(
n
2)
∞∏
j=1

(1− q1−2j)
=
∞∏
j=1

1

1− q1−2j

With the Lemma 3.3.2, we can rewrite

1

1− q1−2j
=

q2j−1

q2j−1 − 1
= 1 +

q

q2j − q

and define

pn :=
q

q2j − q
We trivially have that pn →∞ 0 and pn ≥ 0.

From the lemma, we have that

1 +
∞∑
i=1

pn ≤
∞∏
j=1

1

(1− q1−2j)
≤ e

∑∞
i=1 pn

We have for any n > 0
q

(q2)n
≤ pn ≤

1

qn

From this, we get
q

1− q2
≤

∞∑
i=1

pn ≤
1

q − 1
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and so
∞∏
j=1

1

(1− q1−2j)
≤ e

1
q−1

Corollary 3.3.2.

lim
n,k→∞

µ(n, k)

ν(n, k)
= 1

Proof.

The limit for k →∞ is equivalent to the limit for q →∞. After the limit n→∞, if

we do an asymptotical equivalence with respect to q and get

∞∏
j=1

1

(1− q1−2j))
≤ e

1
q−1 ∼∞ 1

With the lower bound and the different representation of B◦, we can extend the

results of Calderini on the exact cardinality of the variety for k = 1 and rewrite the

proof in a different way.

Proposition 3.3.4. Let N := n+ k and V := FN , with n ≥ 2 and k ≥ 1. Then

|V(Ik)| = N(n, k) =


2k − 1 n = 2

(2k + 3)(2k − 1)(2k − 2) n = 3

2(n2)
∏dn−1

2
e

j=1 (1− 21−2j) k = 1 and n even

0 k = 1 and n odd

Proof.

Case 3.3.1 (n = 2).

Just consider the matrices

M =

(
0 x

x 0

)
x ∈ F2k such that M respect the condition of Prop. 3.2.1

In this case, we get exactly sym0(2) with q = 2k because the vectors of the matrix

are orthogonal one with the other.
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Case 3.3.2 (n = 3).

Consider the matrices

M =

0 y z

y 0 x

z x 0

 x, y, z ∈ F2k such that M respect the condition of Prop. 3.2.1

Let consider the different cases:

· x 6= 0 : 2k − 1 possible values

◦ y = 0 : so z /∈ {0, x} and so we get 2k − 2 possible values

◦ y = x : so z /∈ {0, x} and so we get 2k − 2 possible values

◦ y 6= x : so z can be any element, y /∈ {0, x}. So 2k(2k − 2) possible pairs

· x = 0 : y 6= 0 ∧ z 6= {0, y} and so we get (2k − 1)(2k − 2) possible pairs

Summing all the possible triple, we get

(2k − 1)(2k − 2 + 2k − 2 + 2k(2k − 2)) + (2k − 1)(2k − 2) = (2k − 1)(2k − 2)(2k + 3)

Case 3.3.3 (k = 1).

As we consider F2k = F2, we have that Mn,n(F2) = Sym0-GLn(F2).

And so we are just counting the invertible, skew-symmetric invertible matrix over F
with dimension n. They are

sym0(n) =

2(n2)
∏dn−1

2
e

j=1 (1− 21−2j) n even

0 n odd

3.4 Exact number algorithm

In the appendix of [Cal15], it is presented an algorithm that counts the number

of operations with the form of the Theorem 2.4.7 with fixed N = n+ k and k.

We present an algorithm that generate the translation group T◦ using the matrix

representation and then check the dimension of U(T◦) with the rank of the matrix

B◦.
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Algorithm 3.4.1. Let n, k ∈ N with n ≥ 2 and k ≥ 1. The main goal is having

dimU(T◦) = k.

We know from the matrix construction of an operation ◦ that we need n matrix of

dimension n× k.

Consider the matrix B◦ ∈M where we indicate with ∗ a possible element of F2k :

B◦ =


0 ∗ · · · ∗
∗ 0

. . .
...

...
. . . . . . ∗

∗ · · · ∗ 0


As we can observe, B◦ have n2 − n elements ∗ in F2k . For the symmetry of B◦, the

number of ∗ is
(
n
2

)
.

We construct the Bei’s as:

1. Construct Be1 with n− 1 elements in F2k .

2. From the fact that T◦ is abelian, we have that

e1 ◦ e2 = e1ke2 + e2 = e2ke1 + e2 = e2 ◦ e1

e1ke2 + e1 = e2ke1 + e2

e1(ke2 + In+k) = e2(ke1 + In+k)

and so the second row of ke2 + In+k has to be equal to the first row of ke1 + In+k.

Starting from the fact that we are considering the operation ◦ with form described

in Theorem 2.4.7, we have that the second row of Be1 is equal to the first row

of Be2.

Then, the second element of Be2 is zero.

Then we can append n− 2 elements of F2k .

3. In the same way, we can create the Bei+1
vector using the i + 1-th position of

the Bej with j < i + 1, append a zero that will be the i + 1-th element of Bei+1

and then n− (i+ 1) elements of F2k .

4. To construct Bn, we take the n-th element of every Bei for i ∈ 1..(n − 1) and

then append a 0.

44



The construction permits us to easily create B◦ using
(
n
2

)
elements of F2k .

For this reason, consider the cartesian product of
(
n
2

)
times F2k , indexed with i and j:

O :=
n−1∏
i=1

n−i∏
j=1

F2k =
i=1

(F2k × · · · × F2k)︸ ︷︷ ︸
n−1 elements

×
i=2

(F2k × · · · × F2k)︸ ︷︷ ︸
n−2 elements

× · · ·
i=n−1
(F2k)︸ ︷︷ ︸

1 element

)

The set is divided in such a way that for every i, there are exactly n − i element

of F2k .

For u ∈ O, we can generate an operation ◦ with the construction described before.

Every element in this set will generate an operation ◦ over Fn+k and the operation

◦ generates an abelian elementary subgroup T◦ ⊆ AGL+.

The operations ◦ constructed in this way, will have, for the Bei’s, matrix dimen-

sion n and k and they will be in form of the Theorem 2.4.7 and we will have that

dim(U(T◦)) ≥ k.

For every u ∈ O, we generate the matrix B◦ described in Section 3.2. B◦ will

represent a single operation ◦.
We are now interested in searching only the operations ◦ that has dim(U(T◦)) = k.

This is guaranteed if and only if Rk(B◦) = n when we consider B◦ in the form of a

(nk)× n matrix over F2.

We compacted the construction idea in the diagram in Figure 3.1.

O 3 u {Bei}i∈1..n
RkB◦≤n︷︸︸︷
B◦

RkB◦=n︷︸︸︷
B◦

◦ T◦︸︷︷︸
dim(U(T◦))≥k

T◦︸︷︷︸
dim(U(T◦))=k

generate create

is
eq

u
iv
a
len

t

search

is
eq

u
iv
a
len

t

is
eq

u
iv
a
len

t

generate search

Figure 3.1: main idea from the set O to the operation ◦ that has dim(U(T◦)) = k

We describe, in the Figure 3.2, the work-flow diagram of the matrix construction
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algorithm:

Input: N , k Generate all the(
n
2

)
possible

combination for

Bei

For every combina-

tion, generate the

Bei ’s

Create the matrix

B◦

Check the rank of

B◦

If it is n, increase

the counter

Figure 3.2: work-flow of the Matrix construction

Proposition 3.4.1. Let n ≥ 2 and k ≥ 1.

Assume that:

· Generating O has cost O(1)

· Creating the Bei’s for all i has cost O(n)

· Check the rank of a matrix n×m: using Gauss elimination as algorithm. Cost:

O(min(n,m) · n ·m)

Then the computational complexity of the matrix construction algorithm is O
(

2k(
n
2)(n3k)

)
Proof.

Following the algorithm:

+ Generate O. #O = 2k(
n
2). Cost 1

+ For every o ∈ O:

· Generate B◦. Cost: n

· Checking the rank for a single ◦. Cost: n3k

So the complexity is

O
(

1 + 2k(
n
2)(n+ n3k)

)
∼ O

(
2k(

n
2)(n3k)

)
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The main difference with respect to Calderini’s algorithm is the use of linear

algebra and not algorithms for the group representation and intersection.

Algorithm 3.4.2 (Calderini’s counting algorithm).

Let n ≥ 2, k ≥ 1. Let T+ be the translation group of Fn+k.

To count the operation ◦ such that the group T◦ has dim(U(T◦)) = k, the algorithm

proceeds:

1. The construction of the set of Bei’s is fundamentally equivalent:

(a) Generate O as before.

(b) For every u ∈ O, generate the Bei’s and the kei’s inserting Bei’s in the

upper-right corner.

2. Create the group T◦ = 〈{τei = keiσei}i∈1..(n+k)〉.

3. Intersect T◦∩T+ and check the cardinality. If it is 2k, then increase the counter.

In Figure 3.3, we describe the work-flow of Calderini’s bound

Input: N , k Generate all the(
n
2

)
possible

combination for

Bei

For every combina-

tion, generate the

Bei ’s

Create the matrices

kei ’s

Generate T◦ and

check the cardinal-

ity of T+ ∩ T◦

If it is 2k, increase

the counter

Figure 3.3: work-flow of Calderini’s bound

Remark 3.4.1. The two algorithms work as a brute force and test all the possible

operations ◦.
A first improvement should reduce the searching set O or construct it in a clever way.

We tested the algorithms and checked the correctness of the number of sums with

fixed N = n+ k and k.
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Calderini, in his Thesis [Cal15], present the exact number of operation ◦ only for

n ∈ {3, 4, 5, 6}, with all the admissible k.

We extended the calculation even to n = 7 with the two algorithms.

The times and operations found are reported in Table 3.2.

To do the computation, we used a standard MacBook Pro (late 2013) with a Intel-i5

and 8 GB of RAM.

N = n+ k k Number of operations Calderini’s time Matrix time

3 1 1 0.000 0.010

4 1 0 0.000 0.000

4 2 3 0.000 0.000

5 1 28 0.040 0.010

5 2 42 0.080 0.010

5 3 7 0.000 0.000

6 1 0 1.310 0.220

6 2 3360 12.880 0.730

6 3 462 1.440 0.060

6 4 15 0.020 0.000

7 1 13888 99.580 9.240

7 2 937440 15771.740 239.150

7 3 254968 5947.070 45.720

7 4 3990 39.240 0.490

7 5 31 0.090 0.000

Table 3.2: computation time in seconds and comparing test of Calderini’s and Matrix

bound

As we can see, in this case, the use of linear algebra in the algorithm rather than

finite represented group algorithms is a better choice.
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Hidden sum algorithms

In this chapter different algorithm to generate, manage and search hidden sums

will be presented.

We will start with an algorithm to generate a single operation ◦ and define a bijec-

tion between all the ◦ operation and a numerical space that can be easily software

implemented to save and archive the operation.

Successively, we will start to create different algorithms to search hidden sums for

the different blocks of a block cipher:

· Mixing layer as the ◦ that mantain the linearity of the mixing layer

· Substitution Box in the differential properties and the possibility to linearise

them

· Block Ciphers seen as the composition of the Sbox and Mixing Layer

In this thesis we will concentrate on the mixing layer.

The properties and algorithms for the substitution box and the entire block cipher

are not developed in this thesis.

4.1 Construct a generic hidden sum

In this section, there will be defined an algorithm that generate the operation ◦
from a set of input parameters.

Algorithm 4.1.1 (Construct a single operation ◦).
Let n ≥ 2 and k ≥ 1.

Consider the construction of B◦, as described in Section 3.2, from the set

O :=
n−1∏
i=1

n−i∏
j=1

Fk
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As described in Algorithm 3.4.1, every u ∈ O will generate an operation ◦.

We choose a single u as
(
n
2

)
elements of F2k .

To complete the algorithm, add k copies of the null matrix to obtain all the Bei’s.

The set {Bei} can be adjusted to create the set {kei} from which we can generate the

maps τei in the form of the Theorem 2.4.7.

As a Python-like pseudo-code :

Consider coeff as a list of number list.

1

2 #

3 # Extend the c o e f f i c i e n t s o f ’ o ’

4 # Input :

5 # co e f f : t h e c o e f f i c i e n t s to i n s e r t

6 #

7 de f e x t endCar t e s i an ( c o e f f ) :

8 v a l o r s = [

9 [ c o e f f [ j ] [ i−j ] : j in [ 1 . . ( i −1) ] ]

10 ca t c o e f f [ i ] : i in [ 1 . .#c o e f f ] ]

11 r e tu rn v a l o r s

1

2 #

3 # Generate B ei

4 # Input :

5 # va l o r s : t h e c o e f f i c i e n t s to i n s e r t

6 # i : which B ei we want to g ene ra t e

7 #

8 de f g enera t eBe i ( v a l o r s , i ) :

9

10 # Generate empty matr ix

11 Bei = ZeroMatrix (GF(2) , n , k )

12

13 # In s e r t a l i s t o f k z e r o s in the i−t h p o s i t i o n

14 v a l o r s = [ v a l o r s [ j ] : j in [ 1 . . ( i −1) ] ca t [ 0 : j in [ 1 . . k ] ] ca t [ v a l o r s [ j ] : j

in [ i . . n ] ]

15

16 f o r i in range (n) :

17 # In s e r t in Bei t he v a l o r s v e c t o r

18 Bei = InsertRow (Bei , v a l o r s [ i ] , i )

19

20 r e tu rn Bei

Here is an example to understand the functionality of the two functions:
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extendedCartesian generate the list that will become B◦ without the null-diagonal.

Every element of the output is the list of values that will become the rows of Bei. In

the list for a Bei, it is absent the i-th element of Bei.

((a1, a2, a3), (a4, a5), (a6), ()) −→ ((a1, a2, a3), (a1, a4, a5), (a2, a4, a6), (a3, a5, a6))

generateBei does the transformation from a list of value to the matrix Bei. For

example in n = 4 and k = 2:

(1, α, α + 1) and i = 2 −→ Be2 =


1 0

0 0

0 1

1 1

 =


1

0

α

α + 1



1

2 #

3 # Generate the d i f f e r e n t ope ra t i on

4 # Input :

5 # n , k : t o t a l dimension and dimension f o r g ene ra t e t he matr i x s

6 # co e f f : t h e c o e f f i c i e n t to use f o r g ene r a t i n g ’ o ’

7 # Output :

8 # B ei : l i s t o f a l l t h e B ei f o r t he canon i ca l base

9 #

10 de f genera t eOpera t i on (n , k , c o e f f ) :

11 z e ro = ZeroMatrix (GF(2) ,n , k )

12

13 v a l o r s = ex t endCar t e s i an ( c o e f f )

14 B ei = [ genera t eBe i ( v a l o r s [ i ] , i ) : i in range (n) ]

15

16 # Add the remaining k zero matr ix

17 B ei = B ei ca t [ z e ro ]∗ k
18 r e tu rn B ei

generateOperation, for example, with n = 4 and k = 2:
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((α, α + 1, 1), (0, 1), (α + 1), ())→



Be1 =


0 0

0 1

1 1

1 0

 Be2 =


0 1

0 0

0 0

1 0



Be3 =


1 1

0 0

0 0

1 1

 Be4 =


1 0

1 0

1 1

0 0



Be5 =


0 0

0 0

0 0

0 0

 Be6 =


0 0

0 0

0 0

0 0



After generating the Bei’s, we can calculate all Bv’s. So we obtain all the τv’s

adding the Bv in an identity matrix of dimension n+ k.

If all Bei = 0, we have that the operation ◦ is exactly the XOR operation +.

Otherwise T◦ 6= T+ and T+ ⊂ AGL◦ by construction.

Note 4.1.1.

The fixed k is just a lower bound of the dimension of U(T◦).

From the input coefficients, we can get a bigger U(T◦). To test that the dimension is

really k, it is just needed to construct B◦ and check if the rank is n.

With the algorithm, we create an 1-1 correspondence δ between

O
δ←→

{
{Bei}i∈1..(n+k)

∣∣∣∣∣ T◦ in Theorem 2.4.7 form, and

dim(U(T◦)) ≥ k

}

If we need to save the operation ◦, it has a space complexity of O
(
k n(n−1)

2

)
.

Just consider the fact that we need to save
(
n
2

)
numbers that can be represent in k bits.

The algorithm, on a standard computer, create a random single operation ◦ with

(n+ k, k) = (128, 64) in ∼ 0.420 seconds and saving the operation occupies 15.75 kB

in memory.
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In Appendix A.2, a Magma code of the algorithm is presented and explained.

4.2 Mixing Layer

In this section, we will explain the steps made to achieve the construction of an

algorithm that search all the operation ◦ that linearize a linear map λ ∈ GL+(n).

Suppose we have a λ ∈ GL+ ∩GL◦.

We write λ as a block matrix, λ =

(
A D

C B

)
.

We are interested in the conditions that make λ contained in GL◦ ∩GL+.

Proposition 4.2.1. Let n ≥ 2 and k ≥ 1. Let V = Fn+k.

Let λ ∈ GL+ ∩GL◦ with T◦ ⊆ AGL+ abelian elementary regular subgroup such that

T+ ⊆ AGL◦.

Then, for every y ∈ V , if τy = Myσy, we have that Myλ = λMyλ.

Proof.

Let x, y ∈ V . Let τy = Myσy = (My + y). For the linearity of λ with respect to the

operation ◦ we have

(x ◦ y)λ = xλ ◦ yλ

where

(x ◦ y)λ = (xMy + y)λ

= xMyλ+ yλ

and

xλ ◦ yλ = xλMyλ + yλ

Imposing the equality we get

xMyλ+ yλ = xλMyλ + yλ =⇒ x(Myλ) = x(λMyλ) =⇒Myλ = λMyλ
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Corollary 4.2.1. With the hypothesis of the Proposition 4.2.1, write λ as a block

matrix λ =

(
A D

C B

)
.

Then λ =

(
A D

0 B

)
with


A ∈ GL+(n)

B ∈ GL+(k)

D ∈Mn,k(Fq)

ByB = AByλ ∀y ∈ V

Proof. Write λ as a block matrix, λ =

(
A D

C B

)
.

From the hypothesis :λ ∈ GL+ ∩GL◦.

From the Proposition 4.2.1:

Myλ = λMyλ ⇐⇒

(
In By

0 Ik

)(
A D

C B

)
=

(
A D

C B

)(
In Byλ

0 Ik

)
and obtain (

In By

0 Ik

)(
A D

C B

)
=

(
A+ByC D +ByB

C B

)
(
A D

C B

)(
In Byλ

0 Ik

)
=

(
A AByλ +D

CByλ B

)
Imposing the equality, we get

ByB = AByλ

ByC = 0 ∀y∈V
CByλ = 0 ∀y∈V

We claim that C = 0.

In fact, from the fact that U(T◦)λ = U(T◦) = Span{en+1, · · · , en+k}

U(T◦)λ = U(T◦)(
0 0

0 Ik

)(
A D

C B

)
=

(
0 0

C B · Ik

)(
0 0

C B

)
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from which we obtain C = 0 and B ∈ GL+.

We have that λ is of the form

λ =

(
A D

0 B

)

Note that λ ∈ GL+ =⇒ det(λ) = det(A) det(B) 6= 0.

So A ∈ GL+(n) and B ∈ GL+(k).

Remark 4.2.1. From the proof of the proposition, we observe that the matrix D can

be any matrix Mn,k(F) as it is irrelevant in the condition of the definition.

For an operation ◦ over V = Fn+k such that T◦ ⊆ AGL+ abelian elementary

subgroup such that T+ ⊆ AGL◦ abelian subgroup, we have that λ ∈ GL+ ∩GL◦ if

the condition of the Corollary 4.2.1 are met.

Let x = (x1, x2), y = (y1, y2) ∈ V = Fn+k and suppose we have a λ ∈ GL+ ∩GL◦.

We will consider the two different equations:

(x+ y)λ = xλ+ yλ (x ◦ y)λ = xλ ◦ yλ

The first equality:

xλ+ yλ = (x1A+ y1A, x1D + y1D + x2B + y2B) (4.1)

= (x+ y)λ

and the second:

xλ ◦ yλ = (x1A, x1D + x2B) ◦ (y1A, y1D + y2B)

= (x1A, x1D + x2B)

((
I Byλ

0 I

)
+ (y1A, y1D + y2B)

)
= (x1A+ y1A, x1AByλ + x1D + x2B + y1D + y2B)

because λ ∈ GL+ ∩GL◦, we have for all v ∈ V : ABvλ = BvB

= (x1A+ y1A, x1ByB + x1D + x2B + y1D + y2B) (4.2)

= (x1 + y1, x1By + x2 + y2)λ

= (x ◦ y)λ
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If we compare the equations 4.1 and 4.2, we notice that

(x ◦ y)λ︸ ︷︷ ︸
4.1

= (x1A+ y1A, x1ByB + x1D + x2B + y1D + y2B) = (x+ y)λ+ (0, x1ByB)︸ ︷︷ ︸
4.2

So we get that λ acts on the operation ◦ as it does on the operation + with a

“difference” that can be collected in the value (0, x1ByB).

We can see this value as the x · y in the radical ring description that is present in the

preliminaries Subsection 2.4.1.

Now we can recall the condition for an operation ◦ and connect them to λ:

1. If for all x, y ∈ V as x = (x1, x2) and y = (y1, y2) we have that x1ByB = 0, then

we have that T+ ≡ T◦.

2. From the fact that T◦ is abelian

x1ByB = y1BxB

3. From the associativity property of T◦

((x ◦ y) ◦ z)λ = (x ◦ (y ◦ z)) =⇒ x1(By +Bz)B = x1By+zB

4. From the Corollary 4.2.1

x1ByB = x1By+vB = 0

where v ∈ U(To).

Note that for v ∈ U(T◦) and any v ∈ V , we have By = By+v because τyτy+v =

τyτyτv = τv.

5. From the fact that T◦ is elementary, we have that yτy = 0 and so y1ByB = 0.

We can now state the main problem of the section:

Problem 4.2.1. Let n ≥ 2 and k ≥ 1. Let V = Fn+k.
Let λ ∈ GL+(n) mixing layer. Does another operation ◦ such that λ ∈ GL◦(n) exist?
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4.2.1 SearchLinearity Algorithm

At this point we have sufficient condition on the blocks of λ to state an algorithm

that retrive the operations ◦.
We assume that U(T◦) is generated by the last k vector of the canonical basis.

Algorithm 4.2.1 (SearchLinearity).

Let n ≥ 2 and k ≥ 1. Let V = Fn+k.

Let λ ∈ GL+ in the block form λ =

(
A D

0 B

)
with A ∈ GL+(n) and B ∈ GL+(k).

Consider {e1, . . . , en+k} the canonical basis of V .

Note that we have that τei = σei for ei ∈ U(T◦) and so for i ∈ (n+ 1)..(n+ k).

This means that Bei = 0 for i ∈ (n+ 1)..(n+ k).

We can now suppose λ ∈ GL◦ and obtain the constrain that AByλ = ByB and so

is linear for an operation ◦.
This constrain can be seen as a matrix linear system that has as equations:

1. for all i ∈ 1..n:

BeiB = ABeiλ = A

(
n+k∑
i=1

ciBei

)
where ci is the i-th component of eiλ = c1e1 ◦ · · · ◦ cn+ken+k.
From the fact that Bei = 0 for i ∈ (n+ 1)..(n+ k), we can rewrite the equation

to

BeiB = ABeiλ = A

(
n∑
i=1

ciBei

)
We can note that from the Algorithm 2.4.1, we have that the first n ci’s in the

combination with respect to the operation ◦ are the same with respect to the

operation +.

2. for all i ∈ 1..(n+ k):

eiBei = 0

3. for all i ∈ 1..(n+ k) and j ∈ 1..(n+ k):

ejBei = eiBej

The solutions {Bei}i∈1..n ∪ {Bei = 0}i∈(n+1)..(n+k) can be used to generate the op-

eration ◦.
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If exist a solution different from all the matrices be 0, we have an operation ◦ that

is different form +.

Note 4.2.1. Since we are searching for all the possible operations ◦ that linearise λ,

we can find operations ◦ such that dim(U(T◦)) ≥ k.

So, the algorithm can be summarized as:

1. Calculate {eiλ}i∈1..n = {v1, . . . , vn}.

2. Resolve the matrix system, for all i ∈ 1..n

BeiB = ABvi = A

(∑
j∈1..n

cjBej

)

3. Check that the solution is such that eiBei = 0 and eiBej = ejBei for all i ∈ 1..n

and j ∈ 1..n.

4. The solution can be used in the Algorithm 4.1.1 to generate the operation ◦

Proposition 4.2.2. The SearchLinearity algorithm resolve the Problem 4.2.1.

Proof. It follows directly from the construction made in the algorithm.

We search the possible Bv’s that linearise λ and so impose to the Bei ’s the constrains

that the blocks of λ need to have to be in GL+ ∩GL◦.

Remark 4.2.2.

To optimize the algorithm, the matrix linear system can be seen as a linear system

just by unrolling the matrices:


b1,1 · · · b1,k

...
. . .

...

bn,1 · · · bn,k

←→ ( 1-st row︷ ︸︸ ︷
b1,1, · · · , b1,k,

2-nd row︷ ︸︸ ︷
b2,1, · · · , b2,k, · · · ,

n-th row︷ ︸︸ ︷
bn,1, · · · , bn,k

)

With this:
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• Resolve the matrix system for all j ∈ 1..n,
∑

i∈vj ABei = BejB is equivalent to

n2 · k linear equation in n · (n− 1) · k variables.

• Check that the solution are in the form eiBei = 0 and eiBej = ejBei is equivalent

to
(
n+1
2

)
k linear equations.

And so we only need to find a solution of a (n2k +
(
n+1
2

)
k)× n2k matrix.

Remark 4.2.3. The solutions B = {{Bei}i∈1..n} that we obtain from the algorithm are

a subspace of
(
Fn×k

)n
. It will be generated by a basis {Bj}j∈1..l with some dimension

l that depends on λ.

Example 4.2.1. Consider λ ∈ GL+(3). We fix n = 3 and k = 1.

λ =

1 0 1

1 1 1

0 0 1


as permutation

λ : ((1, 0, 0) (1, 0, 1)) ((0, 1, 0) (1, 1, 1) (0, 1, 1) (1, 1, 0))

And so

A =

(
1 0

1 1

)
B =

(
1
)

For a better reading experience, we will denote the Bei as row vector even if they

are intended as column vectors and with In the identity matrix of dimension n.

We have that Be3 = (0, 0) and e3λ = e3.

Be1 = Be1B = A(Be1 +Be3) = ABe1 =⇒ (A+ I2)Be1 = 0→ Be1 = {(0, 0), (0, 1)}

Be2B = A(Be1 +Be2 +Be3) =⇒ (A+ I2)Be2 = ABe1

and so we have the casesBe1 = (0, 0) =⇒ Be2 = {(0, 0), (0, 1)}
Be1 = (0, 1) =⇒ Be1 = {(1, 0)}
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Now, if we consider Be1 = (0, 0), the only acceptable solution is Be2 = (0, 0). In

this case Be1 = Be2 = Be3 = (0, 0) and so we get that the operation ◦ is equivalent

to +.

On the other hand, if we consider Be1 = (0, 1), Be2 = (1, 0), Be3 = (0, 0), we get a

operation ◦ different from +.

As an example that the operation ◦ is not the standard XOR +, consider

(1, 0, 0) ◦ (0, 1, 0) = (1, 0, 0) ·

((
I2 BT

e2

0 1

))
+ (0, 1, 0)

= (1, 0, 0) ·


1 0 1

0 1 0

0 0 1


+ (0, 1, 0)

= (1, 0, 1) + (0, 1, 0)

= (1, 1, 1)

6= (1, 1, 0) = (1, 0, 0) + (0, 1, 0)

and an example that shows that the operation ◦ linearize λ

(0, 1, 1) = (1, 1, 1)λ = ((1, 0, 0) ◦ (0, 1, 0))λ

= (1, 0, 0)λ ◦ (0, 1, 0)λ

= (1, 0, 1) ◦ (1, 1, 1)

= (1, 0, 1) ·


1 0 1

0 1 1

0 0 1


+ (1, 1, 1)

= (1, 0, 0) + (1, 1, 1)

= (0, 1, 1)

4.2.2 Computational Complexity

As the problem is reduced to solve a linear system, we will compute the com-

putational complexity as a metric to compare and observe the possible real world

application.
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Proposition 4.2.3. Let n+k = dimV where k = dim(Rk(B)) and n = dim(Rk(A)).

Assume the complexity to be :

• applying λ or λ−1 has cost 11

• checking if a number is zero has cost 1

• inserting a single value in a matrix has cost 1

• solving a linear system in n variable and m equation, has cost min(m,n) · nm2

• the output is not saved in memory

Then the time complexity is O (n6k3) and the space complexity is O
(
l · 2k−1n2

)
where

l is the dimension of the solution subspace.

Proof.

Following the algorithm’s steps:

• Calculating {eiλ}i∈n+1..n+k = {v1, . . . , vk} has cost k

• Generating the matrix needs n2k ·
(
n+1
2

)
k operation, if we näıvely fill it

• Resolve the matrix system is equivalent to a system 2n2 · k × n2k variables. So

it has a time complexity of n2k · n2k · n2k = n6k3. It will generate at least a

solution with space complexity n(n−1)
2

2k. Let l be the dimension of the solution

subspace.

So we have

TIME : O(k + n3k2(n+ 1) + n6k3) ∼ O
(
n6k3

)
SPACE : O(l · 2k−1n(n− 1))

So considering a medium worst case in which k ∼ n

TIME : O
(
n9
)

SPACE : O
(
l · 2

n
2
−1n2

)

A top performance PC3 with a computational capability of 4.64 ·1012 ∼ 238 flops/s

1We can consider λ as a look-up table in memory or as a hardware implementation.
2Using Gauss reduction. It can be lowered using a sparse-matrix.
3For a real hardware, the Radeon HD 5000 Series has the computational capability described.
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Size of the block cipher n ∼ k in bit Time in second

64 32 5 27 : 2 minutes

128 64 6 216 : 270 days

256 128 7 225 : 32 years

Table 4.1: theoretical computation time for a Radeon HD 5000. Case n ∼ k.

In the worst case ( k ∼ n ), the cost of search an operation ◦ is O(n9). In the

Table 4.1 are reported some theoretical time for the standard block cipher size in

modern cryptography.

In the case where the dimension k is smaller than n ( k << n ), the cost of search

an operation ◦ is O(n6).In the Table 4.2 are reported some theoretical time for the

standard block cipher size in modern cryptography.

Size of the block cipher n ∼ in bit Time in second

64 64 6 2−2 : 0.25 seconds

128 128 7 24 : 16 seconds

256 256 8 210 : 17 minutes

Table 4.2: theoretical computation time for a Radeon HD 5000. Case n� k.

Example 4.2.2. It is important to observe that the possibility to translate the prob-

lem in finding a solution to a linear system, has a huge impact on the performance.

We compared the algorithm with a different and more näıve algorithm that

1. Generate O as described in Section 3.2

2. For every operation u ∈ O:

Filter the set O and let O′ = {u ∈ O|ABeiλ = BeiB} where the Bei are obtained

by u.

3. Return O′

We obtained, for the näıve algorithm, the computational time reported in the

Table 4.3 where

• Partial time indicates the seconds needed to construct the operations space

O to filter
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• Time represent the total time of the algorithm

• Difference indicates the effective time that was used by the algorithm to search

in the operations space O

n k Number of

operation

Partial time Time Difference

2 1 2 0.000 0.000 0.000

2 2 1 0.000 0.000 0.000

2 3 2 0.000 0.000 0.000

2 4 1 0.010 0.010 0.000

2 5 2 0.000 0.000 0.000

2 6 2 0.040 0.040 0.000

2 7 2 0.120 0.120 0.000

2 8 2 0.460 0.460 0.000

2 9 1 1.760 1.760 0.000

2 10 4 7.180 7.180 0.000

2 11 1 30.800 30.820 0.020

3 1 1 0.000 0.000 0.000

3 2 4 0.010 0.010 0.000

3 3 8 0.890 0.890 0.000

3 4 1 53.050 53.090 0.040

4 1 4 0.020 0.020 0.000

4 2 16 63.210 63.260 0.050

Table 4.3: experimental computational time for the näıve algorithm.

We plotted the results of the SearchLinearity algorithm.

As we can observe in Figure 4.1, when we consider n ∼ k, the time complexity increase

really fast.
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Figure 4.1: Graph of the time to search the operations ◦ that linearize λ with fixed

n and k.
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4.3 PRESENT’s mixing layer

PRESENT (see [BKL+07]) is a lightweight block cipher, developed by the Or-

ange Labs, Ruhr University Bochum and the Technical University of Denmark and

presented at the Cryptographic Hardware and Embedded Systems of 2007. It is de-

signed to respond to some critical environment where AES was unsuitable (quoting

the content of the presented paper):

1. The cipher is to be implemented in hardware in a easy way

2. Application will require only a moderate security levels.

They considered 80-bit security adequate.

3. Applications are unlikely to require the encryption of large amounts of data.

Implementations might therefore be optimised for performance or for space

without too much practical impact.

4. In some applications it is possible that the key will be fixed at the time of device

manufacture.

In such cases there would be no need to re-key a device. This means that the

cipher should consider key manipulation attacks.

5. After security, the physical space required for an implementation will be the

primary consideration.

This is closely followed by peak and average power consumption, with the timing

requirements being a third important metric.

6. In applications that demand the most efficient use of space, the block cipher

will often only be implemented as encryption-only.

Taking these consideration in account, the authors choosed to develop a block

cipher with a 64-bit block and a 80-bit key.

The International Organization for Standardization and the International Elec-

trotechnical Commission included PRESENT in the new international standard for

lightweight cryptographic methods (see [ISO12]).

4.3.1 Algebraic description and properties

We can define PRESENT as an iterated, translation based, block cipher

PRESENT :M×K −→M
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with

· Message space : M = F64

· Key space : K = F80

· Number of rounds : r = 31

· Key scheduler : as a function that given a key k ∈ K, it returns 32 ordered ki’s

round-keys with i ∈ 1..32.

Let 32-th round-key k0 is used to pre-whitening the result.

We denote with σki the translation xσki = x+ ki.

· Permutation box : PRESENT is constructed on 16 parallel 4-bits permutation

box γ.

γ : F4 −→ F4

(x1, x2, x3, x4)γ =


x1x2x4 + x1x3x4 + x1 + x2x3x4 + x2x3 + x3 + x4 + 1

x1x2x4 + x1x3x4 + x1x3 + x1x4 + x1 + x2 + x3x4 + 1

x1x2x4 + x1x2 + x1x3x4 + x1x3 + x1 + x2x3x4 + x3

x1 + x2x3 + x2 + x4


· Mixing Layer : PRESENT has a mixing layer λ

λ : F64 −→ F64

λ can be seen as a bit-permutation that changes the bit-positions.

ei
λ−→ ej ⇒



1→ 1 2→ 17 3→ 33 4→ 49 5→ 2 6→ 18 7→ 34 8→ 50

9→ 3 10→ 19 11→ 35 12→ 51 13→ 4 14→ 20 15→ 36 16→ 52

17→ 5 18→ 21 19→ 37 20→ 53 21→ 6 22→ 22 23→ 38 24→ 54

25→ 7 26→ 23 27→ 39 28→ 55 29→ 8 30→ 24 31→ 40 32→ 56

33→ 9 34→ 25 35→ 41 36→ 57 37→ 10 38→ 26 39→ 42 40→ 58

41→ 11 42→ 27 43→ 43 44→ 59 45→ 12 46→ 28 47→ 44 48→ 60

49→ 13 50→ 29 51→ 45 52→ 61 53→ 14 54→ 30 55→ 46 56→ 62

57→ 15 58→ 31 59→ 47 60→ 63 61→ 16 62→ 32 63→ 48 64→ 64



The single i-th round of PRESENT can be represented with γλσki where γ and λ

are round independent and σki is the i-th round key obtained by the key scheduler.

All the 31 round have this form except for the 0-th round which is a pre-whitening

where the block cipher just sum the k0 key on the plaintext and it can be represented

with σk0 .
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For this reason, PRESENT is a iterated block cipher and it can be represented as

PRESENT = σk0

(
31∏
i=1

γλσki

)

We can now state some properties for λ and γ:

1. γ is 4-differential uniform

2. γ is weakly 4-differential uniform

3. γ is not anti-crocked

4. λ is such that λ3 = 1

5. λ has 4 fixed points, λ fixes the bits in position {1, 22, 43, 64}

For this reasons, the hypothesis of the Theorem 2.3.2 are not achieved and so it

may be present a hidden sum into the PRESENT block cipher.

4.3.2 Hidden sum on PRESENT’s mixing layer

We now consider λ, the PRESENT’s Mixing Layer, and search the operations that

will linearize it.

To permit the research using the algorithm presented in the thesis, we have to do

some preparation.

To use the Algorithm 4.2.1, we need to have a linear function in the block form:

λ =

(
A D

0 B

) A ∈ GL+

B ∈ GL+

For this reason we consider the permutation

π = (e1e61)(e22e62)(e43e63) ∈ Sym({ei|i ∈ 1..64})

such that the conjugation of λ with π transform λ in a algorithm’s accepted matrix.

πλπ−1 =

(
A 0

0 I4

)
= λ̂

67



In a general case, we need to have that π ∈ GL+(n+ k).

We can now apply the Algorithm 4.2.1 and obtain all the possible operations that

linearize λ̂. The operation space will be denoted with O.

The time to compute the operations space O is ∼ 10.420 seconds and it is generated

by 2360 60-tuples of 60× 4 matrices.

So the number of operations that linearize λ̂, in the form described in Theorem 2.4.7,

are #O = 22360.

We have to search the operations ◦ that linearize λ of PRESENT.

For this reason, consider a ◦ ∈ O obtained from the algorithm. From the fact that ◦
linearizes λ̂, we can obtain a new operation 4 that linearizes λ just by conjugation

T◦ =

〈 τe1 = ke1σe1
τe2 = ke2σe2

...

τen+k = ken+kσen+k

〉
π−1(·)π−−−−−−−−→

〈 Mv1σv1 = τv1
Mv2σv2 = τv2

...

Mvn+kσvn+k = τvn+k

〉
= T4

where vi = eiπ and the Mvi = π−1keiπ could not be in the form of Theorem 2.4.7.

We have that {vi|i ∈ 1..(n+ k)} form a basis for Fn+k.
We have that

T4 = π−1T◦π

So for every τv ∈ T◦ correspond a single τw ∈ T4.

We can now construct τv ∈ T4 considering

v = (c1v14· · ·4cn+kvn+k) = π−1(c1e1 ◦ · · · ◦ cn+ken+k)π

Consider I = {i|ci 6= 0}. We have that τv = Mvσv with

Mv =
∏
i∈I

Mvi =
∏
i∈I

π−1keiπ = π−1

(∏
i∈I

kei

)
π = π−1

(
In

∑
i∈I Bei

0 Ik

)
π

We so can construct the operation 4 that linearizes the PRESENT’s λ using the

operation ◦ and the permutation π.

Example 4.3.1. We have the operation ◦ in the form of the Theorem 2.4.7 and the

conjugacy map π such that π−1T◦π = T4.
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Let {vi|i ∈ 1..n+ k} basis in Fn+k for the operation 4 where vi = eiπ.

Suppose we want to calculate x4y. We know, from construction:

yπ−1 = ©
i∈Iy

ei τy = π−1τyπ−1π

We proceed as follows:

(x4y) = xτy = xπ−1τyπ−1π

=

(
(xπ−1)

(
In

∑
i∈Iy Bei

0 Ik

)
+ (yπ−1)

)
π

= (xπ−1τyπ−1)π = ((xπ−1) ◦ (yπ−1))π

From this, we can see that we only need the operation ◦ and the conjugacy map π to

construct 4.

If we consider a linear map λ = π−1λ̂π with λ̂ ∈ GL◦, we have

(x4y)λ = ((xπ−1) ◦ (yπ−1))πλ

= ((xπ−1) ◦ (yπ−1))λ̂π

= (xπ−1λ̂ ◦ yπ−1λ̂)π = (xλ4yλ)

and so λ ∈ GL4

4.3.3 Computational results

From the construction done in the previous subsection, we will describe some al-

gorithms that optimize the use of the operation 4 obtained by conjugacy π of an

operation ◦ in the form of the Theorem 2.4.7.

Successively an operation 4 that linearize the PRESENT’s mixing layer λ will be

presented.

We will now describe an algorithm to rapidly execute the operation 4 that is the

operation generated by the conjugacy class T4 = π−1T◦π.
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Algorithm 4.3.1 (Permuted Operation). Consider an operation ◦ in the form of the

Theorem 2.4.7 and a permutation π ∈ GL+.

Let {kei}i∈1..(n+k) the matrices of the transformation τei for the canonical basis.

Let x, y ∈ Fn+k.

To calculate x4y, do:

1. Let v = xπ−1. Let w = yπ−1 = ©
i∈Iw

ei

2. Calculate z as

z = v ◦ w = v(kw + w) = v

((∏
i∈Iw

kei

)
+ w

)

3. Return zπ

By construction, zπ = x4y.

Note 4.3.1. Let w = c1e1 ◦ · · · ◦ cn+ken+k and w = c′1e1 + · · · + c′n+ken+k be the

combination with respect to the operation ◦ and +.

From the Algorithm 2.4.1, we have

ci = c′i for i ∈ 1..n

and so we have that

Iw = {i|c′i 6= 0 and i ∈ 1..n}

and from this we get

kw =
∏

i ∈ 1..n

i ∈ Iw

kei

Starting from the PRESENT’s mixing layer, we consider the canonical basis per-

mutation

π = (e1e61)(e22e62)(e43e63) ∈ Sym({ei|i ∈ 1..64})

We can now consider

λ̂ = πλπ−1 =

(
A 0

0 I4

)
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We can now use the Algorithm 4.2.1 and obtain the operation space O that con-

tains all the operations ◦ such that λ̂ ∈ GL◦.

We randomly take an operation ◦ that is represented in Table 4.4.

The operation has RkB◦ = 60 = n and so the operation has dimU(T◦) = 4 = k.

To compact the table, we considered every row of Bei as a number in 0..(24− 1). The

representation is the same as the one used in Algorithm 4.1.1.
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Table 4.4: Bei ’s of a random operation ◦ that linearize PRESENT’s mixing layer λ
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Let x, y ∈ F64 and consider π such that

T4 = π−1T◦π

We check that the operation ◦ linearize λ by constructing different Magma func-

tions.

To do it, we calculate the two values

xλ4yλ (x4y)λ

and check their equality. To execute the operation 4, we do

x4y = ((xπ−1) ◦ (yπ−1))π

We so can write the function that will execute the operation 4 by giving in input

the operation ◦ and the permutation π.

1

2 // Code to execute the ope ra t i on s :

3 //

4 // Create the matrix M ei

5

6 f unc t i on getB (x , op )

7 n := #Elt seq (x ) ;

8 B := Ident i tyMatr ix (GF(2) ,n ) ;

9 f o r i in [ 1 . .#El t seq (x ) ] do

10 i f x [ i ] eq 1 then

11 B := B ∗ op [ i ] ;

12 end i f ;

13 end f o r ;

14 r e turn B;

15 end func t i on ;

16

17

18 // Execute

19 // x∗M y + y

20

21 f unc t i on oS (x , y , op )

22 r e turn x ∗ getB (y , op ) + y ;

23 end func t i on ;

24

25

26 // Execute

27 // (x∗ piˆ−1 o y∗ pi ˆ−1)∗ pi = x t r i a n g l e y

28 // I f p i=Id −−> i t execute (x o y )

29

30 f unc t i on Op(x , y , op , p i )

31 r e turn oS (x∗ piˆ−1 , y∗ pi ˆ−1,op ) ∗ pi ;
32 end func t i on ;

We choose a random operation (the one represented in Table 4.4) and execute 215

random selection for x, y and check the equality.
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1

2

3 // Taking a Random operat ion and c r ea t e the matr i ce s M ei

4 // Let a the opera t i on space

5

6 op := solToBei (Random( a ) ,n , k ) ;

7 opp := BeiToMei ( op , n , k ) cat [ Ident i tyMatr ix (GF(2) ,n+k) : i in [ 1 . . k ] ] ;

8

9 // Check i f c o r r e c t

10 // Create the vec to r space GF(2) o f dimension 64

11

12 V := VectorSpace (GF(2) ,n+k) ;

13

14 // Test 2ˆ15 random x , y

15

16 t := Cputime ( ) ;

17 f o r i in [ 1 . . 2 ˆ 1 5 ] do

18 x := Random(V) ; y := Random(V) ;

19

20 // Let M as the permutation matrix from o to t r i a n g l e

21

22 // Check

23 // x∗ lambda t r i a n g l e y∗ lambda == (x t r i a n g l e y ) ∗ lambda

24

25 i f not (Op(x∗presentML , y∗presentML , opp , M) eq Op(x , y , opp ,M) ∗presentML ) then

26 pr in t x , y , ” − Error ” ;

27 end i f ;

28 end f o r ;

29 Cputime ( t ) ;

We executed 50 tests and there were no errors.

The mean test time to check 215 random x, y was ∼ 13.150 seconds.

Example 4.3.2. We will report a single numerical example to check that the oper-

ation 4 linearize PRESENT’s λ.

Let x = e2 and y = e3.

We have that

xπ−1 = e2 yπ−1 = e3

Now, from Table 4.4, we have

e2 ◦ e3 = (e2 + e3) + (e61 + e62 + e63)

We now apply π to the result

((e2 + e3) + (e61 + e62 + e63))π = ((e2 + e3) + (e1 + e22 + e43))
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We now apply λ and get

((e2 + e3) + (e1 + e22 + e43))λ = ((e17 + e33) + (e1 + e22 + e43))

We now calculate

e2λ = e17 e3λ = e33

and then

e174e33 = (e17π
−1 ◦ e33π−1)π = (e17 ◦ e33)π

(e17 + e33 + (e61 + e62 + e63))π = ((e17 + e33) + (e1 + e22 + e43))

We have the equality and so for x = e2 and y = e3, we have that

(x4y)λ = xλ4yλ

We analysed the operation space O and tried to check the rank of the different

operation that can be founded.

To do it, we build a Magma script that randomly chooses an operation ◦, check RkB◦

and save the dimension obtained in a list.

1

2

3 // Create B o and return the rank

4

5 f unc t i on rankOpK( l i sB e i , n , k )

6 r e turn Rank(Matrix (GF(2) ,n∗k , n,& cat [ E l t s eq ( i ) : i in l i s B e i ] ) ) ;

7 end func t i on ;

8

9

10 // I n i t i a l i z e the ranks l i s t and execute the t e s t

11

12 ranks := [ 0 : i in [ 1 . . 6 1 ] ] ;

13

14 t := Cputime ( ) ;

15

16 f o r i in [ 1 . . 2 ˆ 1 6 ] do

17 j := rankOpK( solToBei (Random( a ) ,n , k ) ,n , k ) ;

18 ranks [ j +1] := ranks [ j +1] + 1 ;

19 end f o r ;

20

21 Cputime ( t ) ;

The time that we needed to check the rank of 216 random operation was∼ 2034.790

seconds (almost 34 minutes).

The ranks obtained are all such that RkB◦ = n and so dim(U(T◦)) = 4.
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Magma Code

In this section Magma scripts of the algorithms described in the thesis and some

additional preparatory Magma scripts will be presented.

A.1 Auxiliary functions

As a general definition, we use this style to generate T+ and AGL+,GL+ where

we

1. Create the vector space V , once fixed a dimension n

2. We create the set of the elemnt of V

3. We generate Sym(V )

4. We create the list of traslations τv = kvσv for v ∈ V . In the code, we considered

kv = In.

5. We generate the subgroup of the translation T◦

6. AGL◦ is generated as the normalizer of T◦ with respect to Sym(V )

7. GL◦ is the stabilizer of AGL◦ with respect to 0

1 V := VectorSpace (GF(2) ,n) ;

2 Vs := {v : v in V} ;
3 S := Sym(Vs) ;

4 T := [map<V −> V | x :−> x+v> : v in V ] ;

5 t := sub<S | [ [ t ( v ) : v in Vs ] : t in T]> ;

6

7 AGLp := Normal izer (S , t ) ;

8 GLp := S t a b i l i z e r (AGLp,V! 0 ) ;

We then have some auxiliary function to navigate between permutation as group

elements or as matrices.

For this reason we sometimes need to convert between this two representation.

1 // Aux i l i a ry func t i on to convert a decimal number in a n b i t vec to r .

2 f unc t i on decToBin (n , k )
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3 tmp :=( In t s eq (n , 2 ) ) ;

4 zero : = [ ] ;

5 i f #tmp eq k then

6 e l s e

7 zero := [ 0 : i in [ 1 . . ( k−#tmp) ] ] ;

8 end i f ;

9 r e turn [GF(2) ! i : i in tmp cat zero ] ;

10 end func t i on ;

11

12

13

14 // From permutation group to matrix + vec to r ( from permGroup to AGL +)

15

16 f unc t i on PermToMatrix (permGroup , n)

17

18 V := VectorSpace (GF(2) ,n) ;

19 perm := Generators ( permGroup ) ;

20 matr ixs := [ ] ;

21 c o e f f s := [ ] ;

22 f o r i in perm do

23 c o e f f := (V! 0 ) ˆ i ;

24 matrix := Matrix (GF(2) ,n , n , [ V! decToBin (2ˆ j , n ) ˆ i + c o e f f : j in [ 0 . . ( n−1) ] ] ) ;

25

26 matr ixs := Append( matrixs , matrix ) ;

27 c o e f f s := Append( c o e f f s , c o e f f ) ;

28 end f o r ;

29

30 r e turn matrixs , c o e f f s ;

31 end func t i on ;

32

33

34

35

36 // From s i n g l e permutation to matrix + vecto r ( from perm to AGL +)

37

38 f unc t i on PermSToMatrix (perm , n)

39 V := VectorSpace (GF(2) ,n) ;

40 matr ixs := [ ] ;

41 c o e f f s := [ ] ;

42 perm := [ perm ] ;

43

44 f o r i in perm do

45 c o e f f := (V! 0 ) ˆ i ;

46 matrix := Matrix (GF(2) ,n , n , [ V! decToBin (2ˆ j , n ) ˆ i + c o e f f : j in [ 0 . . ( n−1) ] ] ) ;

47

48 matr ixs := Append( matrixs , matrix ) ;

49 c o e f f s := Append( c o e f f s , c o e f f ) ;

50 end f o r ;

51

52 r e turn matrixs , c o e f f s ;

53 end func t i on ;
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A.2 constructOperation

This code generate the different Mei ’s and their corrispective translation τei ’s.

The coefficients are passed in input as list of list of integers, concerning the form

described in Section 3.2.

1 f unc t i on genMatrix (n , k , i , num)

2 zero := [GF(2) |0 : i in [ 1 . . k ] ] ;

3 matrix := [ decToBin (num[ i ] , k ) : i in [ 1 . .#num ] ] ;

4 I := Ident i tyMatr ix (GF(2) , ( n+k) ) ;

5 r e turn In s e r tB lock ( I , Matrix (GF(2) ,n , k , I n s e r t ( matrix , i , z e ro ) ) , 1 , (n+1) ) ;

6 end func t i on ;

7

8 f unc t i on genOperation (n , k , c o e f f )

9 V := VectorSpace (GF(2) , ( n+k) ) ;

10 e i := [ V! decToBin (2ˆ i , ( n+k) ) : i in [ 0 . . ( n+k−1) ] ] ;
11

12

13 va l o r s := [ [ c o e f f [ j ] [ ( i−j ) ] : j in [ 1 . . ( i −1) ] ] cat c o e f f [ i ] : i in [ 1 . .#c o e f f ] ] ;

14

15 B ei := [ genMatrix (n , k , i , v a l o r s [ i ] ) : i in [ 1 . . n ] ] ;

16 B ei := B ei cat [ Ident i tyMatr ix (GF(2) , ( n+k) ) : i in [ 1 . . k ] ] ;

17

18

19 t a u e i := [ map< V −> V | x :−> x∗B ei [ i ] + e i [ i ]> : i in [ 1 . . ( n+k) ] ] ;

20

21 r e turn t au e i , B e i ;

22 end func t i on ;

23

The algorithm’s work-flow:

1. Generates the vectorial space n+ k and creates the canonical basis for it.

2. From the list coeff with
(
n
2

)
elements, enlarges the list to a n2 maintaining the

valors[i][i] == 0 and valors[i][j] == valors[j][i] that corresponds to the property

of the matrices Bei ’s.

3. Generates the matrix Bei with every single list and insert it in a identity matrix

4. Concatenates with k identity matrices

5. Creates the maps and return

A.3 searchLinearity

This function search for the operations ◦ that linearize λ.

It returns aa as the space of all the operations, bb as the generators of the space.

1 f unc t i on searchOperat ion2 ( lambda , n , k , t )
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2

3 V := VectorSpace (GF(2) , ( n+k) ) ;

4 Vn := VectorSpace (GF(2) , (2∗n∗n∗k ) ) ;

5 e i := [ V! decToBin (2ˆ i , ( n+k) ) : i in [ 0 . . ( n+k−1) ] ] ;
6 e i l := [ ElementToSequence ( e i [ j ] ∗ lambda ) : j in [ 1 . .#e i ] ] ;

7

8 A := Submatrix ( lambda , 1 , 1 , n , n ) ;

9 B := Submatrix ( lambda , ( n+1) , ( n+1) ,k , k ) ;

10

11 mat := SparseMatrix (GF(2) , (2∗n∗n∗k ) ,n∗n∗k ) ;
12

13 f o r t in [ 1 . . n ] do

14 f o r i in [ 1 . . n ] do

15 f o r j in [ 1 . . k ] do

16

17 // Matrix A

18 f o r m in [ 1 . . k ] do

19 mat [ ( t−1)∗n∗k + ( i −1)∗k + j ] [ ( t−1)∗n∗k + ( i −1)∗k + m] := mat [ ( t−1)∗n∗k + ( i

−1)∗k + j ] [ ( t−1)∗n∗k + ( i −1)∗k + m] + B[m] [ j ] ;

20 end f o r ;

21

22 // Matrix B

23 f o r u in [ 1 . . n ] do

24 i f e i l [ t ] [ u ] eq 1 then

25 f o r o in [ 1 . . n ] do

26 mat [ ( t−1)∗n∗k + ( i −1)∗k + j ] [ ( u−1)∗n∗k + (o−1)∗k + j ] := mat [ ( t−1)∗n∗k
+ ( i −1)∗k + j ] [ ( u−1)∗n∗k + (o−1)∗k + j ] + A[ i ] [ o ] ;

27 end f o r ;

28 end i f ;

29 end f o r ;

30 end f o r ;

31 end f o r ;

32 end f o r ;

33

34 // e iB e i = 0

35 // e iB e j + e jB e j = 0

36

37 pos := 1 ;

38 f o r j in [ 1 . . n ] do

39 f o r i in [ 1 . . n ] do

40 f o r l in [ 1 . . k ] do

41 mat [ n∗n∗k + pos ] [ ( i −1)∗n∗k + ( j−1)∗k + l ] := 1 ;

42 mat [ n∗n∗k + pos ] [ ( j−1)∗n∗k + ( i −1)∗k + l ] := 1 ;

43 pos := pos + 1 ;

44 end f o r ;

45 end f o r ;

46 end f o r ;

47

48 aa , bb := So lu t i on ( Transpose (Matrix (mat) ) , Vn! 0 ) ;

49 r e turn bb , [ so lToBei ( E l t seq ( i ) ,n , k ) : i in Generators (bb) ] ;

50

51 end func t i on ;

52

The algorithm’s work-flow:

1. Generates the vectorial space n+ k and creates the canonical basis for it.
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2. Generates the vectorial space 2 ∗ n2k that will be the vector space where the

operation space will be contained.

3. Calculates all the eiλ’s and store the results.

4. Generates the sparse matrix that contains all the constrains to linearize λ

5. Finds the solution space and return it. Additionally it returns the generator of

the space.

A.4 exactNumberOperation

This script, taking in input n and k, count all the operation ◦ defined over Fn+k

such that dimU(T◦) = k.

1 f unc t i on countOperation (n , k )

2

3 nn := n − k ;

4

5 f unc t i on decToBin (n , k )

6 tmp :=( In t s eq (n , 2 ) ) ;

7 zero : = [ ] ;

8 i f #tmp eq k then

9 e l s e

10 zero := [ 0 : i in [ 1 . . ( k−#tmp) ] ] ;

11 end i f ;

12 r e turn [GF(2) ! i : i in tmp cat zero ] ;

13 end func t i on ;

14

15 f unc t i on genOperation (n , k , c o e f f )

16

17 va l o r s := [ [ c o e f f [ j ] [ ( i−j ) ] : j in [ 1 . . ( i −1) ] ] cat [ c o e f f [ i ] [ j ] : j in [ 1 . .#

c o e f f [ i ] ] ] : i in [ 1 . .# c o e f f ] ] cat [ [ c o e f f [ j ] [ ( n−j ) ] : j in [ 1 . . ( n−1) ] ] ] ;
18 zero := [GF(2) |0 : i in [ 1 . . k ] ] ;

19 matrix := [ [ decToBin (num[ i ] , k ) : i in [ 1 . .#num] ] : num in va l o r s ] ;

20 B ei := [ E l t seq (Matrix (GF(2) ,n , k , I n s e r t ( matrix [ i ] , i , z e ro ) ) ) : i in [ 1 . .#matrix ] ] ;

21 r e turn ( B e i ) ;

22 end func t i on ;

23

24

25

26 t := Cputime ( ) ;

27

28 l := [ 0 . . 2 ˆ k−1] ;

29 l l := Cartes ianProduct ( [ Cartes ianProduct ( [ l : k in [ 1 . . nn−r ] ] ) : r in [ 1 . . nn−1 ] ] ) ;

30

31 cc := [ 0 : i in [ 1 . . ( nn+2) ] ] ;

32

33 f o r c o e f f in l l do

34 op := genOperation (nn , k , c o e f f ) ;

35 mop := Matrix (GF(2) ,nn , nn∗k , &cat op ) ;

36 m := Rank(mop) ;

37 cc [m+1] := cc [m+1] + 1 ;

38 end f o r ;
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39

40 pr in t ”$” , cc [ nn+1] , ”$ & $” , Cputime ( t ) , ”$ \\” ;

41 r e turn [ ] ;

42 end func t i on ;

The algorithm’s work-flow is:

1. Generates the space of all the operation with Bei ’s as n× k matrices.

2. Checks if RkB◦ = k and counts the positive matches.

3. Prints the number of operations and the time spent in computation.
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