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Abstract Lattice-based cryptography is evolving rapidly and is often
employed to design cryptographic primitives that hold a great promise
for being post-quantum resistant and can be employed in multiple appli-
cations such as: e-cash, unique digital signatures, non-interactive lottery
and others. In such application scenarios, a user is often required to prove
non-interactively the correct computation of a pseudo-random function
Fk(x) without revealing the secret key k used. Commitment schemes
are also useful in such application settings to commit to a chosen value,
while keeping it hidden to others but being able to reveal the committed
value later. In this short paper, we provide our insights on constructing
a lattice-based simulatable verifiable random function (sVRF) and point
out the main challenges that need to be addressed in order to achieve it.
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1 Introduction

Zero-knowledge (ZK) proofs [14] are employed to prove the knowledge of secret
information while preserving provers privacy with respect to a NP language.
Depending on whether the zero-knowledge proof is performed interactively or
not, we may have interactive or non-interactive protocols; while the latter are
more efficient regarding communication costs.

Pseudo-random functions (PRFs) [10] are a very useful cryptographic primi-
tive that is often employed in combination with zero-knowledge proofs in multiple
application scenarios. Let us consider a general scenario: a prover P wants to
prove to a verifier V the knowledge of a secret w and the correct computation
of a PRF Fw on the input x, i.e., Fw(x). A rather important question is:

How may P prove to V the correct evaluation of the PRF Fw(x) without
leaking any information about w, just by providing a proof π?

We consider the case where the communication between P and V should be
non-interactive, i.e., P needs to provide V all the necessary information to verify
the correct computations in a single step.

The above stated question can be solved by employing a verifiable random
function (VRF) [16]. A VRF is a PRF with two additional algorithms; one



algorithm that is able to generate a proof π of the correct computation of the
PRF Fw(x) as well as a verification algorithm.

Recent papers [11,8] use the VRF into a blockchain context in order to either
define a fair and verifiable lottery in which the winner will publish the next
block, or as a way to generate a “common and shared random string” which can
be seen as an equivalent of the CRS model.

Finding these study cases is extremely important to motivate the community
to research and further develop primitives that allows scenarios where verification
or providing a proof is a mandatory step.

Although algebraic pseudo-random functions and ZK proofs are well studied
primitives, they have received limited attention in lattice settings; furthermore,
to the best of our knowledge, building lattice-based VRFs is an open problem.

Lattice-based cryptographic primitives [1,18], mainly rely on the learning
with errors (LWE) and the short integer solution (SIS) problems; they are quite
promising for providing post-quantum resistance guarantees, while also offering
simpler arithmetic operations and thus, important efficiency guarantees.

Designing a lattice-based VRF is a challenging and currently open problem
since it requires a non-interactive proof in the standard model. As a step to-
wards this direction, in this short paper, we provide our insights on designing
a lattice-based simulatable VRF (sVRF), originally introduced by Chase and
Lysyanskaya [6]. Informally, an sVRF is a VRF defined in a public parameter
model, such as the common random string (CRS) model, which implies the ex-
istence of honest common parameters on the top of the standard VRF system.
More precisely, besides the usual algorithms in a VRF there is an additional pa-
rameter generation algorithm which takes as input the security parameters and
output the public parametrs pp. Both the input domain and output range of the
sVRF depend on pp. Meanwhile, pp is included in the inputs for all the algo-
rithms KeyGen, Eval, Prove and Verify. Moreover, except of the uniqueness and
pseudorandomness properties, sVRFs should also satisfy simulatability which is
a novel property making them different from VRFs. Simulatability states that
there exists a simulator that is able to simulate the common parameters such
that, corresponding to a verification key, for any x, y, it is possible to produce a
proof π that F (sk, x) = y. The simulated transcription is required to be indis-
tinguishable from the values computed from the parameters that are generated
honestly. In this paper, we describe our insights on constructing an sVRF when
relying on Libert et al.’s [14] method to prove zero-knowledge arguments for
lattice-based PRFs. Furthermore, we describe the main challenges that need to
be addressed in order to construct a lattice-based sVRF using this method.

1.1 A Roadmap to Lattice-based sVRFs

Chase and Lysyanskaya’s [6] provided a general construction of sVRFs from
a perfectly binding computational hiding non-interactive commitment scheme
and an unconditionally-sound multi-theorem NIZK for NP. Their main idea
is to use a multi-theorem NIZK to generate the proof for a statement that
the public verification key is a commitment of the secret key and the function
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value is the correct result on the input applied to the secret-keyed PRF, i.e.,
pk = Com(sk; r) ∧ y = F (sk, x). However, such solution is based on a general
assumption, in order to come up with a lattice-based sVRF, we should specify
a lattice-based PRF scheme.

Fortunately, thanks to the very recent significant results of Boneh et al. [4]
who proposed a LWE-based key homomorphic PRFs as well as Libert et al.’s [14]
three round zero-knowledge arguments of correct evaluation for the LWE-based
PRF Boneh et al. [4] w.r.t committed keys and inputs, it is possible to obtain a
non-interactive solution of y = F (sk, x) as the correct evaluation of a PRF for a
secret input x and a committed key sk, and yielding a sVRF furthermore.

Libert et al. have significant contributions [14,12,13] in the area of designing
efficient zero-knowledge proofs for lattice-related language. For instance, Libert
et al. [12] considered how to construct zero-knowledge arguments of knowledge
of a secret matrix X and vectors s, e such that for a public vector b it holds
b = X · s + e mod q. Libert et al. [13] also investigated in the lattice setting
how to design zero-knowledge arguments for the statement that cx, cy and cz
are the commitments to the polynomial-size bit-strings x, y and z which are
the binary representations of large integers X,Y, Z satisfying certain algebraic
relations such as Z = X + Y and Z = X · Y .

In order to obtain zero-knowledge arguments for the correct evaluation of
key-homomorphic PRF 1 of Boneh et al. [4] , Libert et al. [14] presented an
useful abstraction of Stern’s protocol [19] and they modified the Boneh et al.’s
lattice PRF [4] in order to efficiently prove the correct computation of the PRF
interactively, while providing zero-knowledge guarantees.

As stated in their paper, it is possible to obtain the first non-interactive
lattice-based zero-knowledge protocol by directly applying the Fiat-Shamir trans-
formation [9]. The main issue with this choice is that the Fiat-Shamir transforma-
tion is secure in the Random Oracle Model (ROM) which is against the original
sVRF definition [6].

Thus, our main research objective is to find an appropriate transformation
from ZK to NIZK, defined over lattices, not relying on the ROM. In Figure 1,
we depict two different strategies in order to obtain a lattice-based sVRF: either
by directly transforming Libert et al.’s ZK argument or by providing a different
lattice-based ZK PRF proof system and applying a ZK to NIZK transformation
and then the Chase-Lysyanskaya’s transformation from NIZK to sVRF.

Libert’s ZK

Lattice ZK Lattice NIZK Lattice sVRF

Transf.

Transf. Chase et. al [6]

Figure 1. Roadmap to lattice-based sVRF. In bold, this paper’s main research focus.

1 Namely demonstrating knowledge of a committed secret key k, a secret input J and
an output y satisfying y = Fk(J)
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2 Applying Lindell’s Tranformation

In this section we provide our finding when defining a sVRF based on Libert’s
ZK argument and the Lindell’s transformation [15]. We explain our discoveries
and challenges.

We considered Lindell’s transformation [15] from any sigma-protocol into a
corresponding NIZK protocol. In contrast to Fiat-Shamir’s transformation [9],
Lindell’s transformation does not require the random oracle model; more pre-
cisely, in Lindell’s transformation the zero-knowledge property holds in the com-
mon reference string (CRS) model, while in order to achieve soundness, the used
hash function is modeled as a non-programmable random oracle [17].

In order to adopt Lindell’s transformation an important requirement is that
of a dual-mode commitment scheme.

The main concept of a commitment scheme is that it is possible to secretly
fix some message m that it is used in a protocol and in a second phase, open
the commitment and therefore prove the correct knowledge or possession of the
specific message m. Designing lattice-based commitment schemes has already
received some attention in the literature [3,2].

The dual-mode represents the possibility to sample a statement in a language
L via a bit b and use the commitment scheme in a binding way, i.e., a commit-
ment c can be decommitted in a unique message m, or in a “trapdoor” way, i.e.,
that with some secret witness w, it is possible to decommit c to any message
m′.

Therefore, the main property required for a dual-mode commitment scheme
is that it is impossible to distinguish how the bit b is selected and therefore
impossible to know if we are decommitting to the original message or we are
using the trapdoor to decommit to an arbitrary message.

A dual-mode commitment scheme represents a specific type of commitment
schemes that are equivalently defined by Catalano and Visconti as hybrid com-
mitment schemes [5].

As described in [15], in order to define a dual-mode commitment scheme,
Lindell requires a membership-hard efficient-sampling language defined as:

Definition 1 (Membership-hard with Efficient Sampling [15]). Let L
be a language. L is membership-hard with efficient sampling (MHES) if there
exists a probabilistic polynomial-time sampler SL such that for every probabilistic
polynomial-time distinguisher D there exists a negligible function µ(·) such that:

|Pr(D(Sx
L(0, 1n), 1n) = 1)− Pr(D(SL(1, 1n), 1n) = 1)| ≤ µ(n)

where SL(b, ·) is a sampler that returns an instance in the language L if b = 0
and an instance not in the language L if b = 1. Sx

L denotes only the instance
without the witness.

In a nutshell, the MHES language L is a language in which it is hard to
distinguish if an efficient sampling algorithm SL sampled the statement x in the
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language L or not: it is hard to decide the membership of x ∈ L but it is easy
to sample x in the language (or not).

In summary, in order to build an sVRF while employing the Lindell’s trans-
formation, the main building blocks required are depicted in Figure 2.

MHES
Language

Dual Mode
Commitment

Scheme

Lindell’s
Transf.

defines used for

Figure 2. Roadmap to Lindell’s transformation.

By assuming the hardness of the inhomogeneous short integer solution (ISIS)
problem, if we follow the idea and structure of the DDH language construction
proposed by Lindell [15] in order to define the language LIS of Eq. (1), the result
is unfortunately not MHES for common lattice security parameters.

LIS := {(A,B,u,v) | A,B ∈ Zp
n×m, w̃ ∈ {0, 1}m,u = Aw̃,v = Bw̃}. (1)

This is the case since whenever we provide a statement not in the language
(A,B,u,v) /∈ LIS, it exists in fact a statement (A,B,Aw̃′,Aw̃′) ∈ LIS in the
language for some w̃′. Therefore it cannot be used to define a dual-mode com-
mitment scheme mainly because the commitment scheme will not be perfectly
binding, which is a necessary condition in order to use Lindell’s transformation.

3 Challenges and Future Directions

In this section we will briefly discuss and collect our conjectures and/or our
future research directions by dividing them into into two major classes: a first
class of questions related to transformations from ZK to NIZK and a second
class of challenges regarding lattice languages.

3.1 ZK Transformations

Choosing Lindell’s transformation is not optimal for the final goal of constructing
an sVRF since the transformation is defined in the non-programmable ROM.

Ciampi et al. [7] modified and improved Lindell’s transformation: the trans-
formation does not require the non-programmable random oracle nor a perfectly
binding commitment scheme at the cost of a more specific language. By using
Ciampi et al.’s transformation, it might be possible to obtain a ZK to NIZK
transformation not based on the ROM.

Challenge 1 Is it possible to use Ciampi et al. transformation in our sVRF
construction-idea? The main challenge of this approach is to check if any lattice-
based language can be defined in order to fulfil the transformation hypothesis and
requirement.
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With the same spirit, we find an additional challenge of more general in-
terest: a ZK to NIZK transformation that is not defined in the random oracle
model (or any similar ones). Therefore, we state as a general challenge for future
investigation:

Challenge 2 Are there any other transformations in the literature that can be
used for our construction-idea? Are they efficient? How do they compare among
themselves or with respect to the Fiat-Shamir’s transformation?

3.2 Lattice Languages

When considering the Lindell’s transformation, the language LIS is ill-defined
and therefore cannot be used in order to build a dual-mode commitment scheme.
Furthermore, the language challenge of defining a membership-hard language can
be seen as of perpendicular interest.

Challenge 3 Is there a way to define a lattice-based membership-hard efficient
sampling language L that can be used to define a dual-mode commitment scheme?

Generally speaking and quite informally, the main obstacle is finding “good”-
languages that have a “unique-witness”. This means that it would be incredibly
useful to find a lattice-language L in which the witness of a statement x ∈ L is
unique. Solving this problem will open new direction in lattice based cryptogra-
phy.

Challenge 4 Find a lattice-based language L in which every statement x ∈ L
has a unique witness w.

As a different but related problem, if we consider a different ZK PRF proof
system, the ZK language used for our construction-idea requires an additional
property in order to be used by the Chase-Lysyanskaya’s transformation. The
ZK system has to be able to prove the correct computation of the PRF and
the correctness of an additional commitment. It has to be defined over lattices
and, after transforming it with the best ZK to NIZK transformation possible,
the obtained NIZK has to be multi-theorem.

Challenge 5 Given the best ZK transformation, find a ZK PRF argument/proof
system that can be used for the Chase-Lysyanskaya’s transformation.
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