
Thesis for The Degree of Doctor of Philosophy

Cryptographic Tools for Privacy Preservation

Carlo Brunetta

Department of Computer Science & Engineering
Chalmers University of Technology

Gothenburg, Sweden, 2021

Cryptographic Tools for Privacy Preservation

Carlo Brunetta

Copyright c⃝ Carlo Brunetta 2021
except where otherwise stated.
All rights reserved.

ISBN 978-91-7905-528-8
Doktorsavhandlingar vid Chalmers tekniska högskola, Ny serie nr 4995.
ISSN 0346-718X

Technical Report No 205D
Department of Computer Science & Engineering
Chalmers University of Technology
Gothenburg, Sweden

This thesis has been prepared using LATEX.
Printed by Chalmers Reproservice,
Gothenburg, Sweden 2021.

ii

“Breathe, breathe in the air...
...don’t be afraid to care...”

“Breathe” - Pink Floyd

Abstract

Data permeates every aspect of our daily life and it is the backbone of our digitalized
society. Smartphones, smartwatches and many more smart devices measure, collect,
modify and share data in what is known as the Internet of Things.

Often, these devices don’t have enough computation power/storage space thus out-
sourcing some aspects of the data management to the Cloud. Outsourcing computa-
tion/storage to a third party poses natural questions regarding the security and privacy
of the shared sensitive data.

Intuitively, Cryptography is a toolset of primitives/protocols of which security prop-
erties are formally proven while Privacy typically captures additional social/legislative
requirements that relate more to the concept of “trust” between people, “how” data is
used and/or “who” has access to data. This thesis separates the concepts by introdu-
cing an abstract model that classifies data leaks into different types of breaches. Each
class represents a specific requirement/goal related to cryptography, e.g. confidentiality
or integrity, or related to privacy, e.g. liability, sensitive data management and more.

The thesis contains cryptographic tools designed to provide privacy guarantees for
different application scenarios. In more details, the thesis:

(a) defines new encryption schemes that provide formal privacy guarantees such as
theoretical privacy definitions like Differential Privacy (DP), or concrete privacy-
oriented applications covered by existing regulations such as the European General
Data Protection Regulation (GDPR);

(b) proposes new tools and procedures for providing verifiable computation’s guar-
antees in concrete scenarios for post-quantum cryptography or generalisation of
signature schemes;

(c) proposes a methodology for utilising Machine Learning (ML) for analysing the
effective security and privacy of a crypto-tool and, dually, proposes a secure prim-
itive that allows computing specific ML algorithm in a privacy-preserving way;

(d) provides an alternative protocol for secure communication between two parties,
based on the idea of communicating in a periodically timed fashion.

Keywords

Cryptography, Privacy, Outsourced Computation, Cloud Computing, Verifiability

Acknowledgment

Let me start by thanking my supervisor, Katerina. The many conference’s rejections,
the long research visiting, the pandemic and many other complications. It was definitely
tough (for both of us) but it was fun and educational!

Next, I would like to thank my co-supervisor Bei. Always prepared and ready
to keep the work going and, additionally, an amazing office-mate with whom share
mundane discussions regarding food, politics, economics and food (again, yes). I’m
looking forward to coming to visit you in Beijing, either for work or for (food) holidays!

It is really hard to write a complete list of names, but I want to deeply thank all the
many people in my division/unit, Network and System, for sharing the good/bad
moments of the daily work. Additionally, thanks to all the administration “moms
and dads” for all the support that they gave me either “work-related” or “it’s a blue
day”. Tack <3

A big thank you to the uncountable number of friends that crossed my life here in
Chalmers. Thank you for all the good Fika, the beers and all the afterworks that
made the journey a little more chilled.

A special “efharisto poli!” goes to a (crazy) friend and co-worker, Georgia. Thank
you for all the laughs, drinks and philosophical discussions! It was really nice to share
all these crazy years together. I wish you to finish the PhD soon, the best for your
future, a lot of luck and to continue travelling the world!

Another special thanks go to Pablo, Lara, Oliver and Erik. It is definitely a
pleasure seeing an amazing family grow and I really wish you the best of luck for all
the future challenges!

An enormous graxie goes to Elena, my unofficial tutor, guide and co-worker and,
mainly, an amazing Friend, with capital “F”. You helped me a lot at the beginning
of my crazy journey. You and your amazing wife Hedvig were always there to give
good, sincere advice and meaningful help. It is definitely hard to explain our (Aura’s
and mine) gratitude for how amazing you two are and I will not even try. I prefer to
promise that we will continue sharing our path, share the good and bad moments and
try to get together and having a good meal, a couple of drinks and enjoy every moment
together, anywhere on Earth. (==)

Outside work, I was incredibly lucky to have found a multitude of incredibly amazing
Friends, again with capital “F”. We shared different hobbies, interests, opinions but,
most of all, we shared many unforgettable, meaningful and once-in-a-lifetime moments.
Thank you to all my Sahlgrenska’s real-science friends Tugce, Lydia, Eleni, Axel,
Giacomo, Alina, Masako and many more and the “climbing monkeys” Jasmine,
Eridan, Clement and Katja. Of course, I cannot forget to thank new friends like
Martin, Simon, Johan, Isabel, Veronica, the old ones like Alberto “Benjo”,
Davide, Kevin, Kekko, Andrea, Giorgia, Mia, Marta, Gloria, Silvia, Fede,
Gloria, Alice, Mattia, Dylan, Seba, Casa, Costa, Tommy, J, Anto, Maru,
Fox and many, many, many others and, of course, the Vichy’s crew with Captain
Moch, Sbrilli, Anton, Marta, Eros, Fede and Mamma Ambra. Furthermore, a

vii

viii

special thanks go to the “Band with Many Names” composed by Marco, Enzo, Pier,
Evgenii and Grischa. We shared a lot of adventures and I’m really grateful for all
the good bohemian moments and improvised jams. Our band will always be a beautiful
memory in my musical career.

Thank you, my Friends, for every moment. It is indeed the R-life and I know that
our path might diverge. Already many of us are getting married, having our first baby
and/or moving to other countries. Our lives are slowly turning to different paths and I
feel a little sad about it. But if I feel sad, it means that I cared a lot about our Friendship
thus I wish you all the best for your career, family, happiness and any type of goal.
We will definitely meet again, one day, and just “synchronize” our new experiences,
adventures and achievements!

Continuing the emotional side of the section, I want to thanks Aura’s family: Paolo,
Manuela and Alice. Grazie per avermi accolto nella vostra famiglia e per tutto il
sostegno e l’aiuto che date a me e ad Aura. Grazie mille per tutto!

I will switch to my dialect to properly thank my family, Bepi, Reza and Gigi.
Prima de tut, Graxie, con la “G” granda. So de esar al fiol pì casinaro e so benisimo

che no le stat facile vedarme volar via all’estero, cresar così velocemente quasi da no
riconosérme pì. Ma savee benisimo che se son così bravo in tel me laoro, rispetà e amà
da tuti i me Amighi, a le solo graxie a come che me avé cresest. Graxie par averme
soportà, par averve “cavà al pan dala boca” par darme an futuro diverso, milior de quel
che avé pasa voi. So che mi e Gigi sion i vostri punti de orgoglio. Dove saver anca voi
che son sempre fiero, orgoglioso e content de chi che sie, dei vosti enormi sacrifici e dela
enorme umiltà che ve rende così unici. Se son quel che son, a le solo graxie a voi. E ora
che la pension se avicina, vede de goderve al vostro meritato riposo. Graxie de tut.

As you might expect, I left the best for the end!

Thank you, my love. Really really thank you, Aura. You fill my days of love,
energy and (good) no-sense, you give me reasons for fighting for a better Universe, you
definitely make me a better human being (a quite awkward but still a better one!). I
love you and you know it. No infinite amount of ink can describe how important you
are. We share the best moments of our lives and I’m so eager to see where our future
will bring us. All the new adventures, achievements and challenges.

You always call me your “Mountain” because I sometimes make you mad when I’m
too introverted, cold and harsh. But, on the positive side, I’m there, stable and calm,
ready to shift the whole Universe only to see you happy. Coming from the Alps and by
looking at my personality and hobbies, I definitely feel like a Mountain.

You are my precious Stella Alpina.
You are part of me and you make me important, you make me proud of who I am,
you make me want to protect you from all the tourists that are trying to pick you
up and that doesn’t know how strong you really are1. I believe that the “Sea” better
represents who you are. Peaceful but incredibly strong, deep but calm on the surface.
We complete each other, I’m the Mountain, you are the Sea.

I’m not a good swimmer (as we can agree from this last holiday) but there is some-
thing that I love doing: I love to look at the horizon, being from the top of a mountain
or the shoreside. It makes me think of the past, the present and the future. It brings me
peace, as you do, every day. And whenever you bring me peace, I’m able to appreciate
all the love you give me and, to me, our love is all that matters.

1Stelle alpine are astonishingly strong and brave! Like, deciding to live in between harsh rocky
terrain, under the freezing winter snow and strong winds only to pop out in the late summer, to
enjoy the sun and the immense silence and peace that only the highest mountains can provide.
That’s hardcore!

ix

I may have forgotten amazing people that crossed my work and personal life. I’m
technically writing this section during my holidays, so sorry about my bad memory! If
you are not on this list, don’t feel angry. Just let me know and I will offer you a drink!

I concluded my licentiate acknowledgement with a quote from the masterpiece “Dark
Side of the Moon” and I admit that it is a perfect summary even now:

For long you live and high you fly,
and smile you’ll give and tears you’ll cry,
and all you touch and all you see,
is all your life will ever be.

Breathe - Pink Floyd

Appended Publications

This thesis is based on the following publications:

Paper A: C. Brunetta, C. Dimitrakakis, B. Liang, A. Mitrokotsa
“A Differentially Private Encryption Scheme”
20-th Information Security Conference (ISC), 2017, Ho Chi Minh city (Viet Nam).
Spinger, LNCS, Vol. 11124, 2017, pg. 309326. [BDLM17]

Paper B: E. Pagnin, C. Brunetta, P. Picazo-Sanchez
“HIKE: Walking the Privacy Trail”
17th International Conference on Cryptology And Network Security (CANS), 2018,
Naples (Italy). Springer, LNCS, Vol. 10599, 2018, pg. 4366 [PBP18]

Paper C: C. Brunetta, B. Liang, A. Mitrokotsa
“Lattice-Based Simulatable VRFs: Challenges and Future Directions”
1st Workshop in the 12th International Conference on Provable Security (PROVSEC),
2018, Jeju (Rep. of Korea) and Journal of Internet Services and Information Se-
curity, Vol. 8, No. 4 (November, 2018). [BLM18]

Paper D: C. Brunetta, B. Liang, A. Mitrokotsa
“Code-Based Zero Knowledge PRF Arguments”
22-th Information Security Conference (ISC), 2019, New York (USA). Spinger,
LNCS, Vol. 11723, 2019, pg. 171-189. [BLM19]

Paper E: C. Brunetta, B. Liang, A. Mitrokotsa
“Towards Stronger Functional Signatures”
Manuscript.

Paper F: C. Brunetta, P. Picazo-Sanchez
“Modelling Cryptographic Distinguishers Using Machine Learning”
Journal of Cryptographic Engineering (July 2021), [BP21].

Paper G: C. Brunetta, G. Tsaloli, B. Liang, G. Banegas, A. Mitrokotsa
“Non-Interactive, Secure Verifiable Aggregation for Decentralized, Privacy-Preserving
Learning”
To appear in 26th Australasian Conference on Information Security and Privacy
(ACISP), 2021, Perth (Australia).

Paper H: C. Brunetta, M. Larangeira, B. Liang, A. Mitrokotsa, K. Tanaka
“Turn Based Communication Channel”
Manuscript under submission.

xi

xii Appended Publications

Other publications

The following publications were published during my PhD studies, or are currently
under submission. However, they are not appended to this thesis.

(a) C. Brunetta, M. Calderini, and M. Sala
“On hidden sums compatible with a given block cipher diffusion layer”
Discrete Mathematics (Journal), Vol. 342 Issue 2, 2018 [BCS19]

(b) G. Tsaloli, B. Liang, C. Brunetta, G. Banegas, A. Mitrokotsa
“DEVA: Decentralized, Verifiable Secure Aggregation for Privacy-Preserving Learn-
ing”
Manuscript under submission.

Research Contributions

Paper A: I was involved in the initial brainstorming with Aikaterini and Christos who pro-
posed me the idea of including differential privacy in the cryptographic domain.
I had the idea of relaxing the correctness property of an encryption scheme, the
key idea that allows defining differentially private encryption schemes. I further
formalized, defined and proved all the contents of the paper. In the final stage, I
wrote the implementation and the statistical tests.

Paper B: after many fruitful morning-fika and brainstorming with Elena and Pablo (and
Oliver!), we all together traced the main structure and motivation for the HIKE
protocol. During the development of the paper, I was the relay figure for the
translation between theory and implementation. More specifically, I wrote the
draft of some proofs and I was responsible for the theoretical aspects necessary
for the implementation. Finally, I am the corresponding author of this work and
I finalised the camera-ready version.

Paper C: I participated in the initial brainstorming discussion with Bei and Aikaterini after
Bei’s suggestion on the specific topic of constructing a post-quantum verifiable
Pseudo-Random Function. I completely wrote the first draft of the paper. After
receiving some useful external feedback on the paper, I participated in finding
different possible solutions while Bei and Aikaterini revised the draft. In this
final and much shorter version, I conceived the summary of the entire research-
exploration and I was responsible for the introduction-background sections of the
final paper.

Paper D: Bei, Aikaterini and I jointly discussed the possibility of extending Paper C’s meth-
odology for code-based cryptographic assumptions. I discovered and developed the
content of the paper, wrote proofs and I completely wrote the first draft of the
paper. After receiving some useful feedback on the paper from Bei and Aikaterini,
I finalised the paper.

Paper E: I participated in the initial brainstorming discussion with Bei and Aikaterini after
Bei’s suggestion on the specific topic of providing construction for extending the
Functional Signature primitive with a verifiability property. I was responsible for
designing the Strong Functional Signature (SFS) instantiation with the related
security proofs. In the first draft, I wrote the instantiation, security proofs and
general introduction. After receiving some useful external feedback on the paper,
I took the responsibility of revising the SFS’s primitive, security model/properties
and the application described in the introduction.

Paper F: after several discussion with Pablo, we together traced the main structure and mo-
tivation for a methodology for generating cryptographic distinguishers using ma-
chine learning. I was leading the project and developing the theoretical framework.
I designed and performed the statistical analysis of our framework’s experiment.
I wrote the majority of the first draft and handled the journal communications.

Paper G: I joined the discussion with Georgia, Bei, Aikaterini and Gustavo regarding dis-
tributed federated learning. Concurrently, I designed a non-interactive primitive
while Georgia and Bei defined DEVA (Paper b). After receiving some useful ex-
ternal feedback on the first paper, we jointly decided to split the constructions into
two papers (Paper G and b) and I took the responsibility for my construction’s
paper. Thus, I defined and proved the security of NIVA, I wrote the first paper
draft and I helped to debug minor problems in the implementation.

xiv Appended Publications

Paper H: I had the original idea of developing a turned communication channel which I
later developed initially with Aikaterini and Bei and later with Mario and Keisuke
during a research visit. I led the project and, in the first paper version, I wrote the
initial draft of the protocol’s construction and introduction’s section. I double-
checked the fairness security and proof that Mario and Keisuke wrote. After
receiving some useful external feedback on the paper, we decided to split the paper
into concrete instantiation and the theoretical implications of our construction.
Currently, Paper H contains the protocol instantiation that I initially wrote.

All the co-authors agree on the preceding statements.

Thesis Contents

Abstract v

Acknowledgement vii

List of Publications xi

Appended Publications xi

Research Contributions xiii

Introduction 1
1 Abstract Model for Data Leaks . 4

Research Goals for Cryptographic Privacy Preservation 11
2 Thesis Contributions . 13
3 Summary and Future Directions . 20

Paper A - A Differentially Private Encryption Scheme 25
1 Introduction . 28
2 Preliminaries . 31
3 Our Definition of αm1,m2 -correct Encryption Scheme 32
4 Equality Between DP-then-Encrypt and Encrypt+DP 36
5 Example of an αm1,m2 -Correct Homomorphic Encryption Scheme 38
6 Conclusions & Future Work . 41

Paper B - HIKE: Walking the Privacy Trail 43
1 Introduction . 46
2 Preliminaries . 48
3 Labelled Elliptic-curve ElGamal (LEEG). 50
4 FEET: Feature Extensions to LEEG . 52
5 The HIKE protocol . 54
6 Security model and proofs for HIKE . 57
7 Implementation details and results . 61
8 Conclusions and directions for future work 63

Paper C - Lattice-Based Simulatable VRFs: Challenges and Future
Directions 67
1 Introduction . 70
2 Applying Lindell’s Tranformation . 72
3 Translation of Boneh’s PRF . 77
4 Challenges and Future Directions . 79

Paper D - Code-Based Zero Knowledge PRF Arguments 83
1 Intro . 86
2 Preliminaries . 90
3 Code-Based PRF . 91
4 Code-Based Zero Knowledge PRF Argument 94
5 Theoretical Analysis for Implementation Cost 97
6 Conclusions and Future Work . 98

Paper E - Towards Stronger Functional Signatures 101

xv

xvi

1 Introduction . 104
2 Preliminaries . 108
3 Construction Blocks: Variated Schemes 112
4 Strong Functional Signatures . 118
5 Conclusion . 123

Paper F - Modelling Cryptographic Distinguishers Using Machine Learn-
ing 127
1 Introduction . 130
2 Preliminaries . 132
3 Machine Learning Distinguishers . 133
4 Case Study: Cipher Suite Distinguisher for Pseudorandom Generators . 138
5 Conclusions and Future Work . 142

Paper G - Non-Interactive, Secure Verifiable Aggregation for Decent-
ralized, Privacy-Preserving Learning 147
1 Introduction . 150
2 Preliminaries . 152
3 NIVA . 154
4 Implementation and Comparisons . 162

Paper H - Turn Based Communication Channel 169
1 Introduction . 172
2 Preliminaries . 175
3 Instantiating the Turn Based Communication Channel 177
4 Collectively Flipping Coins over the TBCC 186

Bibliography 189

xvii

xviii

Introduction

Every single day
Every word you say
Every game you play
Every night you stay
I’ll be watching you

Every Breath You Take - The Police

Our society lives in an era where every device, electronic or not, is becoming “smart”.
Smartphones, smartwatches, smart glasses are examples of many new devices that are
continuously being constructed and introduced in our daily life. All these smart devices
are designed to improve productivity, automatise tasks and track complex procedures.
This is possible by providing the devices with the ability to manage data by providing
them with computational power and the ability to communicate with each other.

More precisely, the adjective “smart” relates to the device’s ability to handle “data
management” which can be classified into the actions of (i) generating; (ii) commu-
nicating; (iii) storing; and (iv) computing/manipulating data. In other terms, a
smart device is a “standard” device that incorporates a computer-like microcontroller
able to capture the device status, manipulate the information and communicate it to
other smart devices.

This simple concept allows the consideration of hyperconnected networks of (often
low) computational devices, better known as the Internet of Things (IoT). The IoT
principle is based on the ubiquitous presence of cheap and low-computational devices
that constantly generate, collect, manipulate and share data locally between themselves
or with a “higher entity” called the Cloud.

For example, consider the thesis’ writer, Carlo, that lives in a smart home, i.e. a
home where lights, smart electro-domestic and more sensors/actuators are interconnec-
ted on the same home-local network. All the data collected throughout the house is,
often, centrally collected on a house-router that later uploads part of the data to an
external service “on the Cloud”. Abstractly, the Cloud is an interface of data manage-
ment services that any authorised smart device contacts via the Internet and utilises
to “simplify” the data processing. Despite the Orwellian feeling of massively collecting
data and centralising it into a single external entity, the Cloud provides useful analysis
to the router and allows Carlo to better control every measurable aspect of the home.

For example, Carlo might be highly interested in maintaining high-quality air in his
home. To do so, Carlo’s house is filled with air-quality sensors that collect pollution
data, send it to the central router which later “ask the Cloud” for an analysis. Since
this collecting-analysis is continuously executed, Carlo has the power to check the air-
pollution in his house at every moment. This means that Carlo can voice-activate its
home-assistant device and ask “which room has the cleanest air?”, the device will record
Carlo’s command and upload the recording to some voice-recognition service “on the
Cloud” that will transliterate the command’s request.

1

2 Introduction

Whenever the home assistant receives the request transcription, it will ask the home-
router an answer which will, most probably, “contact the Cloud” that will analyse the
request and reply to the router with the answer. After all this back and forth, the router
will provide the assistant with the answer that can effectively be announced verbally to
Carlo after just a couple of seconds.

The careful reader might notice the writer’s highlight of actions referred to “into/to
the Cloud”. The reason for such pedant highlight is the necessity to take a step back and
precisely delineate the concrete reality of the Cloud’s “composition”. Similarly to the
atmospheric homonymous and depicted in Fig. 1, the Cloud is a network conglomeration
of smaller networks of computers, all interconnected and orchestrated to appear as a
“hyper-computer”, i.e. a computer with incredible computational power, unimaginable
storage capacity, extremely efficient communication bandwidth and always available.
The quintessential aspect is that “to use the Cloud”, the user does not need to know
where these computers are, their characteristics, how they operate or how they are
organised. The writer’s highlight wants to point out that “uploading to the Cloud” is,
fundamentally, semantic sugar for “uploading to some unknown-but-retrievable computer
on the Internet”.

x

f

f(x)

Database 1

Database 2

x
f

f(x)

x

Cloud

Figure 1: Picturesque representation of the Cloud’s composition.

Data is the fundamental element of our digital society and imposes a remarkable
role on our digital identity. Generated data can either be public or sensitive/private de-
pending on the data owner thus requiring different confidentiality guarantees whenever
handled. The IoT paradigm is based on having the smart devices execute part of the
data management via cloud computing which, concretely, can be seen as simply requir-
ing the devices to outsource computation to a more powerful computer. In other words,
all the devices’ data is handled by unknown computers on the Internet.

How is it possible to trust the Cloud to properly handle user’s sensitive data?
What does it mean “to trust someone” and “properly handle data”?

Throughout history, humans evolved their secrecy’s needs into the cryptography
discipline. Figuratively, cryptography is the toolset of algorithms and protocols that
allows the user to provide confidentiality, integrity, authenticity and many other prop-
erties that handle sensitive data. As in any proper toolset, there are several tools from
must-have screwdrivers, such as the Diffie-Hellman’s key-agreement protocol, to multi-
purpose Swiss Army-knifes, such as the Fully Homomorphic Encryption (FHE) schemes.
The main objective for all cryptographic tools is to avoid any data leaks, i.e. each one of
these tools is designed to provide precise security guarantees which are formally defined
and mathematically proven, e.g. confidentiality, integrity, authentication, anonymity

Introduction 3

and many more. The use of formal modelling is fundamental to unequivocally describe
how a cryptographic tool must be used to achieve the security guarantees when it can
be used and all the limitation that it might have. The usage of mathematics for de-
scribing the cryptographic elements allows us to firmly state that a provably secure
crypto-tool can not be the cause of a data leak, i.e. the scenario in which a malicious
entity can disrupt/break the provided tool’s security guarantees. On the contrary, if an
adversary can “break the crypto-tool”, then either the cryptographic primitive/protocol
or the security model used is not secure thus it is impossible to formally prove the tool’s
security or model’s usefulness.

Often used in daily conversations, a different concept to consider is privacy. The
main goal for privacy is complex and it is highly related to how data is used and how
to prevent data to be harmful which require an extensive analysis of the application
that requests privacy guarantees. Each privacy guarantee is an “interdimensional” re-
quirement that spans from cryptographic security requirements to real juridical liability,
business’ responsibility or human necessities. In a nutshell, the concept of privacy is
“the framework” that provides real/legal guarantees to people that their data is not
misused in a harmful way.

Privacy and cryptography define a spectrum of requirements that describes the trade-
off between security and usefulness and can be associated with the concept of trust.
On one side of the spectrum, we have the “no-trust” scenario where the user’s data is
required to be secret, where no one else than the data owner can access the data. On the
other side, the “only-trust” scenario where the same user’s data might be communicated
unencrypted with the only requirement of “not misusing this information”.

Hidden in the scenario’s description, the spectrum naturally introduces the concept
of shared data between users, i.e. someone else’s private data which shouldn’t be mis-
used. Any privacy guarantees require shared data to be protected because it requires
the data owner to trust the receiver not to misuse such sensitive information. At a first
glance, protecting shared data might appear as a different way to name private/secret
data but it is essential to understand that it is possible to lose all the privacy guarantees
without breaking any used cryptographic tool. Consider a user that securely uploads to
the Cloud a private photo of him/her and let the user fully trust the Cloud to maintain
the necessary secrecy. Despite the cryptographic guarantees that the communication is
secure, the photo is most probably unencrypted for the Cloud which utilises the photo
for improving its services, e.g. trains classifiers for better face recognition. Without
breaking any crypto tool, the Cloud can break the user’s trust and publicly release the
private photo thus breaking the trust agreement between itself and the user.

This discrepancy between cryptographic and privacy requirements is described in
several legal regulations such as the California Consumer Privacy Act (CCPA) of
2018 [Par18] or the European General Data Protection Regulation (GDPR) [Cou16].
These regulations, and many more, provide a legal foundation that precisely state which
user’s data is sensitive thus requiring the Cloud’s special care while handling the data.
The regulations further describe precise liability penalties whenever a user’s data is mis-
used. For example, the user’s IP address is sensitive information that can be maliciously
used to approximately geo-localise the user or track him/her throughout the web. It is
fundamentally impossible to navigate the web without revealing the personal IP address
thus the servers must correctly handle this, and other, sensitive data. Otherwise, the
users can bring the server’s owner to court for misusing sensitive data.

To understand the differences between cryptographic and privacy guarantees and
further provide future research directions in the intersection area of cryptography and
privacy, it is mandatory to provide an abstract analysis of all the possible data leakage
that might occur between any interaction of two entities.

4 Introduction

1 Abstract Model for Data Leaks

People own collections of personal data and each one of them partitions the collection
based on the specific data’s sensitivity. More formally each person PA classifies data
into the collections of:

• private data C that contains any information that PA is not willing to share
with anyone else. These are highly sensitive data that a malicious entity can use
to seriously harm PA thus must be carefully handled;

• shared data S that contains PA’s private data that is consensually shared
with a different person PB . Because such data is technically private, PA must
trust PB to not misuse/publish the shared data. On the other hand, PB uses the
data to provide some form of benefit to PA, e.g. a personalised service. This data
collection is strictly connected to trust and the concept of privacy;

• public data P that contains PA’s public data that is freely shared with anyone.
Ownership of such data cannot be used to harm PA and are therefore easily
retrievable.

For example, Carlo considers the data x = “work email address” to be public
while ξ = “personal email address” is more sensitive so it is only shared with selec-
ted other people and web services. Consider the last example where Carlo considers
ξ = “personal email address” ∈ S and uses ξ to register to a generic social network N .
A (quite typical) scenario is that the social network N will publicly display ξ by default
because N considers ξ ∈ P. This notion is condensed into the following axiom:

Informal Axiom 1. Data partitioning is subjective, i.e. every person P has his/her
way of partition data into (CP ,SP ,PP).

Sadly, Informal Axiom 1 implies that deciding the sensitivity of a specific data is
ill-defined, i.e. it is not possible to uniquely identify the correct partition to which
data belongs, as previously described.

Additionally, data appears to be “naturally entangled” with other data, as if it is
semantically interconnected. Intuitively, from big sets of information, it is possible to
infer new information, maybe without absolute certainty thus requiring some prob-
abilistic discussion. For example, if Carlo would present itself with a wet umbrella,
the reader can deduce that it is raining outside. Or, by observing Carlo’s smartphone
screen, the reader can infer his usage pattern by analysing the “oily” residues left on
the screen. Furthermore, Sherlock Holmes might be able to deduce the pin-code digits’
used to unlock the phone by analysing the shape of the oily fingerprints. By carefully
reading the examples, observe that Carlo might be unaware of how his data can be
maliciously used when combined with “advanced detective’s knowledge”.

Informal Axiom 2. Data is always dependent on other data: for every information
z, there always exists a set {xi}i∈I that infers about z, i.e. {xi}i∈I → z.

Informal Axiom 2 describes two negative corollaries which state, from some known
information x, the impossibility to compute (i) all the inferable data z, i.e. all the z
such that x→ z; and (ii) all the data-sets {zi}i∈I that infers about x, i.e. {zi}i∈I → x.

The axioms allow the analysis of all the possible inference between the different
sensitivity partitions, e.g. the inferences that take private data {si}i∈I ⊆ C and infers a
public information y ∈ P. By conceptually reasoning on the empirical meaning of such
deductions, the final result is an abstract model that describes a classification of any

Abstract Model for Data Leaks 5

data leak into four semantically different breaches, represented in Fig. 2 and named:
(i) security breach; (ii) direct breach; (iii) coercion breach; (iv) indirect breach.

Before moving to a precise analysis of each breach, it is important to remark on
an indirect consequence of Informal Axiom 1. As in any good model, the data leak
classification into breaches is relative to the observer, i.e. the leak might hurt PA but
benefit PB and it is caused by their different data sensitivity partitioning.

Private Shared Public

Private Shared Public

Security
Breach

Direct Breach

Indirect
Breach

Coercion
Breach

Figure 2: Data leak’s model from the cowgirl’s point of view. The black arrows indicate
the communication between the parties. The red arrows indicate all the possible data
leaks.

1.1 Security Breach

Security breaches are defined whenever an adversary A can “break” the cryptographic
primitives/protocols used and the security properties requested, e.g. A decrypts an
encrypted database of private data or can compromise the integrity of a secure commu-
nication channel.

A historical and didactical example is the cryptanalysis advances that, during the
Second World War, allowed the Allied powers to break the encrypting machine En-
igma used by the Axis powers. Preceding and motivating the development of the first
computers, Enigma is an electro-mechanical encrypting device that appears to have a
physical typewriter-like keyboard and display of light-emitting characters representing
the keyboard. To encrypt, the operator presses a single character key which closes an
internal electrical circuit that lights up a precise character in the display. Internally,
the machine is composed of rotors that rotate at every typed character, modifying the
circuit and the highlighted encrypted output, as represented in Fig. 3. The security
of the device is due to the immense amount of possible starting combinations of the
rotors and other external additional modifications of the circuit made via a plugboard.
Enigma was considered unbreakable.

During the war, the Allied power developed the theoretical foundations of Inform-

6 Introduction

Press
A

F

Press
A

C

Rotate Right Rotor

Figure 3: Conceptual illustration of the Enigma machine’s encryption principle.

ation Theory [Sha48] and Cryptanalysis. Briefly speaking, together with practical ex-
amples of correct decryption, code-books and capturing some Enigma machines, this
new knowledge allowed a refinement on the brute-forced decryption attacks which al-
lowed to decrypt the secret communication and provide useful intelligence on the field.
In other words, Enigma was broken.

In the same spirit, security breaches happen because either the cryptographical
knowledge evolves and new successful attacks are being developed or, more simply,
the wrong crypto-tool is used. The state-of-the-art primitives/protocols are secure up
until the hypothesis used to formally prove the tools’ security guarantees holds. This
requires researchers to constantly check that new attacks don’t break such hypothesis
and promptly report to the community whenever a crypto-tool is broken.

1.2 Direct Breach

Direct breaches are defined whenever it is possible to deduce private/shared data from
public ones. Despite the simple definition, these breaches are intrinsically sneaky to
identify and prevent.

In October 2006, the on-demand streaming service Netflix released a dataset contain-
ing hundreds of millions of private movie ratings generated by half a million subscribers.
The release’s purpose was to allow the development of an improved movie recommend-
ation system. To guarantee privacy, the dataset was anonymised, i.e. the subscriber’s
sensitive data such as user id, email addresses and even the timestamp of the rating
submission was removed. In principle, only public data was released.

A couple of years later, Narayanan and Shmatikov [NS08] were able to de-anonymise
the identity of known subscribers from Netflix’s dataset and obtain his/her movie rat-
ings, thus discovering unexpected sensitive information such as political preferences.
Such a surprising result was possible by considering additional information such as the
one retrievable by personally asking naive questions like “what do you think about this
movie genre?” or, more systematically, utilise the public movie ratings provided by the
Internet Movie DataBase (IMDB). The reader might argue that “de-anonymising movie
ratings don’t sound harmful” but consider the scenario where a malicious adversary A
can de-anonymise the identity of the ratings. Only because A can de-anonymise people
from their “movie tastes”, A can profile the unlucky subscriber and increase the ability
to track him/her throughout the Internet.

Direct breaches are caused by the Informal Axiom 2 and the impossibility to con-
ceive all the possible deductions that public information can provide. Conceptually,
note that it is not obvious how cryptographic tools can protect from such breaches. For

Abstract Model for Data Leaks 7

this reason, the state-of-the-art solution is found in the concept of Differential Pri-
vacy [DMNS06] (DP) which provides a formal framework to measure the privacy loss
of publishing specific data related to a dataset. To understand how DP works, consider
a private dataset of values {xi}ni=1 on which it is required to compute the known func-
tion f . The computed output µ = f(x1, · · · , xn) is publicly released thus meaning that
{xi}ni=1 → µ. Without loss of generality, by cleverly modifying the function’s input, it
might be possible to obtain the public value µ′ = f(x2, · · · , xn) in which the private
data x1 is not used. The direct breach, as represented in Fig. 4, is caused by con-
sidering the function f and the public outputs µ, µ′ and observing that any difference
between outputs must relate with x1, i.e. the breach tries to deduce {µ, µ′, f} → x1.

µ

µ′

Inference

Figure 4: Depiction of the problem solved by the differential privacy framework.

DP provides a methodology to measure the privacy loss caused by releasing f ’s
outputs and, to avoid the breach, a DP mechanism adds noise which is sampled by
a cleverly selected distribution based on the previous measurements. The key concept
of adding cleverly selected noise might sound counterproductive but finds roots in the
idea of “degrading the information accuracy”. For example, by publishing Carlo’s birth
season instead of the month, the probability of guessing his birthdate is degraded thus
a loss inaccuracy.

1.3 Coercion Breach

To understand what coercion breaches are, consider public information x related to
some private data of the person PA. Since x is public, a malicious adversary A might
voluntarily advertise a false-statement x′ that hurts PA’s image/reputation. The “co-
ercion” adjective appears whenever considering that, to clarify that x′ is false and x is
true, PA must provide private data y so to allow the inference y → x thus the adversarial
coercion.

A real example of such malicious persuasion can be found in the widespread phe-
nomenon of media distortion in which fake news are most probably the easier attack
vector. Without entering the immense domain of human psychology, it is well-known
that people can easily be influenced by only providing modified photos or provide emo-
tionally intense messages. These cheap modifications are repeatedly shown to allow
people to unconsciously change their mind regarding, e.g. political beliefs [AG17] or

8 Introduction

memories of well-known historical events [SAL07]. The social damaging impact of me-
dia distortion through fake news is massive and must be prevented.

Coercion breaches are an undesired consequence of Informal Axiom 2 and the fact
that often private data is necessary to understand how public data is deduced. Avoiding
these breaches is a tricky problem that requires taking into consideration the social
aspects of human psychology and it seems counter-intuitive that a cryptographic tool
might help.

A possible solution would require appropriate experts to educate people on digital
etiquette and critical thinking, e.g. by teaching the importance of source verification and
awareness of possible media distortion practices. Observe that the appropriate usage of
crypto-tools can help to discover data misuse by providing specific security guarantees
or, naively, people might be aware of the meaning of the tools guarantees.

1.4 Indirect Breach

The last class in our model are the indirect breaches which are a negative consequence
of sharing private data x to some other person P which is trusted to not misuse x.
Whenever P misuses x, the assumed trust is lost and there is a data leak and the
indirect breach. Whenever reading, in our daily life, news about data leaks and related
privacy loss, often the news describes an indirect breach.

Purely for explanatory reasons, consider a run tracking application, i.e. web applica-
tion that allows users to collect data, such as their heartbeat, pace and much more, from
their running activities with the benefit of providing statistics, professional training ad-
vices and more user control on their activities. One such application is Strava [Str18]
which allows users to provide precise geo-localisation data, i.e. GPS-data. Later on, the
users visualise the GPS-data on a map thus allowing each user to correlate, e.g., their
pace with the topological morphology of the terrain. Strava, like all the others, is often
trusted by its users to securely handle the sensitive data, e.g. GPS-data is commonly
accepted and shown to be incredibly sensitive data [SSM14].

Having a lot of data allows providing interesting features to the users. One of them
is Strava’s “popular routes” which collects the users’ GPS-data, finds highly popular
routes and provides a popularity list where users now can find each other and share a
training session. The feature has the noble motivation of creating a healthy community
and increasing the social interaction between the users.

At the beginning of 2018, the noble feature showcased as a popular route a too-
regularly shaped one in a scarcely populated, almost desertic, part of Afghanistan. By
carefully checking the satellite image of the route, it was possible to discover a secret
military base [Her28]. An unaware American soldier was periodically training inside
the military base, running around an aircraft’s runway thus creating a regularly shaped
route. Strava’s popular route algorithm worked as intended: the soldier was one of
the few people in the whole area using the app which implied that his periodically
tracked route was the most popular. The indirect breach, consequent trust-loss and
legal cost for the data leak’s harmful potential were caused by the soldiers’ unawareness
of Strava’s feature and Strava’s misjudgement on the sensitivity of using the soldier’s
GPS-data.

In general terms, it is easy to see that indirect breaches are caused by Informal
Axiom 1 and the fact that different people have a different opinion regarding data
sensitivity. Trust is a difficult concept to generally formalise thus, to avoid such costly
damages, many state-of-the-art cryptographic protocols provide some specific privacy
guarantees that allow preventing the leak.

Abstract Model for Data Leaks 9

A noticeable mention, of a whole research field that tries to avoid indirect breaches,
is the research in Information Flow Control (IFC). IFC is based on the simple principle
that whenever computing an algorithm on data, the algorithm must not be able to
output private data given in input, depicted in Fig. 5. In other words, whenever the
input is private, specific computational operations are “prohibited” because they might
be reverted to get the input. By studying the “allowed” operations, it is possible
to check which algorithms are immune to indirect breaches and are therefore safely
executable.

Private Input

Public Input

Private Output

Public Output

Secure Program

Figure 5: Conceptual representation of the Information Flow Control principle: a secure
program does not manipulate the private input and reveals it into the public output.

Research Goals for Cryptographic Privacy Preservation

Gentlemen. Your communication lines are vulnerable,
your fire exits need to be monitored, your rent-a-cops are
a tad under-trained...
Outside of that, everything seems to be just fine. You’ll
be getting our full report and analysis in a few days, but
first, who’s got my check?

Sneakers (1992) - Martin Bishop (Robert Redford)

As previously stated, it is the research community goal to provide solutions that
allow to “trust the Cloud” or to avoid any possible data leaks.

The quintessential research goal for any cryptographic solution that handles
people’s data is to avoid data leakages, of any form.

In other words, ideal cryptographic privacy-preserving tools must guarantee (1) a
tamper-proof data generation; (2) secure data communication; (3) confidential and
privacy-oriented data storage; and (4) data computation with measurable privacy guar-
antees, i.e. the computed outputs must not reveal “too much”.

A key concept that allows reducing the gap between ideal and real solutions is veri-
fiability, i.e. the property of providing a tangible value used as “proof” of either the
knowledge of specific information or certification of approval. Many existing crypto-
graphic tools already provide verifiability-like guarantees such as:

• signature schemes allow a signer to attach a signature to the outgoing messages
which can be seen as proof that “the signer notarises the message content”. The
message-signature pair verification strictly relates to some form of liability that
the signer obtains in the act of signing;

• authenticated communication channels, e.g. TLS, allow the communicating parties
to securely communicate and provide the guarantees that only the intended/au-
thorised parties participate in the communication. This is possible by the com-
bination of several different cryptographic tools that are singularly correct and
verifiable and that guarantees the confidentiality of the communication and the
authenticity of the parties identities;

• in applications, zero-knowledge proofs allow a prover to prove a public statement
without revealing the knowledge of a secret witness that easily proves the state-
ment. Being able to provide such verification has profound application scenarios
connected to privacy, liability, anonymity and more.

All the described examples provide verifiability for what the user sees or knows and can
easily provide verifiability guarantees to data generation, storage and communication.
“Securing data computation” and providing “measurable privacy guarantees” are the
missing requirements to tackle.

11

12 Research Goals for Cryptographic Privacy Preservation

Data manipulation transforms potentially sensitive information into new data that
might get published thus having the potential of creating privacy concerns. Quantifying
the privacy loss from publishing a computational output is generally hard to compute
and/or to correctly and practically handle. For this reason and by observing the problem
from a different perspective, it is easier to request proofs of correct computation
on the data and control which computation is performed. It is trivial to see that
providing a refined control on the computable functions allows to bound the complexity
of computing the privacy loss. Indeed, a trade-off between functionalities and privacy
must be considered whenever effectively implementing the system.

Verifying the correct computation of a function allows the verifier to check that the
results are indeed correct and the correct function was computed. In other words, if
something went wrong and the verification fails, the verifier can identify the problem,
e.g. the verifier can precisely shift the data-misuse liability to some entity that later
must defend against accusations in the court and not in the cryptographic domain.

To guarantee any form of privacy, it is fundamental to identify any data misuse
which is only possible if every step of the data management is verified. Ideally, providing
(formally provable) verification to every cryptographic tool allows to prevent any data
leak:

• any direct breach is caused by a careless release of outputs which allows inferring
sensitive data. Requiring the verifiability of the output computation does not
directly avoid such privacy loss but it limits the available computable functions,
thus limiting the possible malicious inferences, and completely shifts the liability
to the publisher. In a sense, these data leaks are solved with the mantra: “Be
aware of what they publish” ;

• verifiability completely solves any coercion breaches since it allows to correctly
pinpoint the trustworthiness of the provided data. It must be said that it is
always important to provide a proof for the computed results and, respectively,
to always request proofs of the content authenticity;

• security breaches are directly related to the formal security properties that the
cryptographic primitives/protocols should achieve. Technically, verifiability is of-
ten an additional security property with a really specific description. In other
words, the motto is “always use proven secure and verifiable cryptographic tools” ;

• indirect breaches are always caused by breaking the data owner’s trust. Verifi-
ability can prevent these breaches whenever privacy is considered such as design
principles for new cryptographic tools by providing certainty that the tools are
correctly used.

The reality is that to avoid unexpected data leaks, cryptographic tools must be
correctly implemented and used as theoretically intended, i.e. the purpose they are
designed for. The purpose is important: there might exist a cryptographic tool that is
considered highly secure by the research community, but it is not designed for privacy-
oriented applications.

This thesis’ goal is to investigate and design new cryptographic primitives/protocols
that consider privacy as a fundamental design requirement. By increasing the crypto-
toolset with new privacy-preserving crypto-tools, it is possible to choose the appropri-
ate primitive/protocol for real applications thus guaranteeing privacy and security for
everyone.

2. THESIS CONTRIBUTIONS 13

2 Thesis Contributions

This thesis considers several privacy-oriented problems and proposes solutions that
formally provide security and privacy-preservation guarantees.

2.1 Differential Privacy and Cryptography

A fundamental principle in Cryptography is that an encryption scheme has to be correct
and confidential, i.e. the ciphertext’s decryption must be the original message and
the message cannot be inferred by the ciphertext. Differently, a differentially private
(DP) mechanism allows data to maintain privacy when revealed and this is done by
introducing a cleverly sampled random noise. Observe that a DP mechanism does not
require any confidentiality requirement. This observation brings up the question of
combining the two feature:

Question A: A Differentially Private Encryption Scheme

Is there a way to define/construct a differentially private encryption
scheme that guarantees confidentiality while data is encrypted and

afterwards provides a measurable privacy guarantee?

Paper A consider an encryption scheme and a DP mechanism as a framework and it
studies the relation between them to merge them into a single cryptographic primitive.

Contribution: we relax the encryption scheme’s correctness property. Intuitively,
the encryption scheme has to “wrongly decrypt” with some bounded and predefined
probability, i.e. the ciphertext’s decryption can return a wrong message m′ with some
probability αm,m′ that depends on the original message m and the final wrong message
m′. The knowledge of such probabilities allows us to prove that the “faulty” encryption
scheme indeed achieves differential privacy. Additionally, an implementation is provided
as a proof-of-concept.

To complete the study, we prove that using such “faulty” encryption schemes is
equivalent to sequentially using a correct encryption scheme and a DP mechanism as
two separate frameworks, as depicted in Fig. 6.

mi
Generating
DP-noise

ri Encryption ci = Enc(mi + ri)

Encrypted
and
Differentially Private
Data

mi
α-correct
Encryption ci = Enc′(mi)

Figure 6: Paper A: The difference between the DP-then-Encrypt (on the top) and our
solution (at the bottom).

This means that if we want to introduce differential privacy to already existing
products/protocols, it is not required to change the already existing cryptographic

14 Research Goals for Cryptographic Privacy Preservation

primitives but it is only necessary to introduce a DP mechanism in the system and
correctly compose it with the encryption scheme.

2.2 Real Privacy Guarantees by Design

The main goal of Paper B is to provide a model/scheme with an implementation de-
signed to provide privacy guarantees concerning privacy policies/regulations, such as
the GDPR, that are not always described in mathematical formalism. By considering
the scenario of a user uploading data to a trusted database that can be queried by third
parties, the paper answers the following question:

Question B: HIKE: Walking the Privacy Trail

Is it possible to design privacy-preserving protocols that comply with
some privacy policies, such as the European GDPR?

We start by selecting some specific articles contained in the GDPR and describe
them as formal cryptographic properties:

(a) data has to be encrypted when stored;

(b) the user decides to selectively allow third parties to access his/her data; and

(c) the user can always delete his/her data from the database (right to be forgotten).

Contribution: to describe the “client, cloud and service provider” model, we use
the concept of a labelled encryption scheme [BCF17] in which every message, or cipher-
text, has a label that can be seen as a unique public identifier for that message. With
these labels and the associativity and commutativity of the underlying group, we can
define decryption tokens that can be generated by the client. This allows the user to
create decryption tokens for specific label-ciphertexts and provide them to a service
provider.

We exploit the additive homomorphic property of the encryption scheme to allow
homomorphic evaluations on the client’s ciphertexts. In this context, the client can
generate decryption tokens for labelled-programs, i.e. the token necessary to decrypt a
specific homomorphic evaluation and defined by the list of inputs, related labels and
function to be computed. Since the function must be known to produce the decryption
token, the clients can refuse to provide the token and therefore not disclose their data.

More concretely, we start from the ElGamal encryption scheme [ElG85], we describe
the scheme as a labelled encryption scheme called LEEG, expand it with some specific
features regarding the decryption token into FEET and finally obtaining the HIKE pro-
tocol, depicted in Fig. 7, that is then proven secure in the GDPR-oriented security
model we defined.

As a final contribution, all our ideas are implemented and our code for the HIKE
protocol is publicly available.

2.3 Post-Quantum Verifiable Pseudorandomness

Quantum computers are the currently accepted future of computation. Despite the
engineering challenges of constructing such a revolutionary machine, the cryptographic
research community is interested in providing new primitives that are guaranteed to be
secure even against adversaries that use a quantum computer.

Thesis Contributions 15

Client Server

Service Providers

Dec(skC,P, ct) → m

Enc(skC, ℓ,m) → ct UploadData(∆, ℓ, ct) → ∆
upload

forget

retrieve

token

retrieve

Destroy(skC,P) → tok

Eval(f, ℓ1, ..., ℓn) → ct

TokenDec(skP, ct, tok) → mTokenGen(skC,P) → tok

Figure 7: From Paper B: The HIKE protocol.

In particular, we focus on verifiable random functions (VRFs) and in particular on
simulatable VRFs (sVRFs). In a nutshell, sVRFs are a family of VRFs in a public
parameter security model, such as the common reference string.

Question C: Lattice sVRF: Challenges and Future Directions

Is it possible to define a post-quantum sVRF, based on lattice as-
sumptions?

Contribution: Paper C proposes the possibility of defining a lattice-based mem-
bership hard with efficient sampling language which can be used to define a
lattice-based dual-mode commitment scheme. We partially conjecture the possibility
to combine the dual-mode commitment scheme with Libert et al.’s protocol [LLNW17]
and Lindell’s transformation [Lin15] and obtain an sVRF under post-quantum assump-
tions, as represented in Fig. 8. Given the non-triviality of the task, we raise and identify
different open challenges in lattice-based cryptography and possible future directions
for achieving a post-quantum sVRF.

Libert’s ZK

Lattice ZK Lattice NIZK Lattice sVRF

Transf.

Transf. Chase et. al [CL07]

Figure 8: Paper C: A roadmap to lattice-based sVRF.

On a similar note, we ask ourselves:

Question D: Code-Based Zero Knowledge PRF Arguments

Is it possible to utilize a similar methodology as for Question C to
define a code-based post-quantum zero-knowledge argument protocol?

Contribution: Paper D utilizes the idea underlying Paper C by transforming a
code-based PRG into a PRF for then introducing a methodology to effectively provide
a zero knowledge argument for the code-based PRF evaluation. We propose a concrete
construction and theoretically estimate the communication cost of our construction.
Additionally, we introduce the whistle-blower notary problem, represented in Fig. 9, of
which Paper C and D’s results are possible solutions.

16 Research Goals for Cryptographic Privacy Preservation

BP

Clients Contract x

Notary k
Published
Contracts

Verifier

???

ZK
Protocol

Figure 9: Paper D: The whistle-blower notary problem.

2.4 Verifying Functional Signature Evaluation

Signature schemes are a fundamental tool in today’s application. They allow using a
signing secret key to compute a signature from any message which later can be publicly
verified with a public verification key and prove the authenticity of the content and
the signer identity. A generalization of signature schemes is proposed by Functional
Signatures (FS) in which the signer owns a functional signing key that allows signing a
specific function evaluation. In other words, a functional signature allows authenticating
the output of the function evaluation, therefore, hiding the original input.

An additional property provided by FS is function hiding in which it is impossible
to infer which function got evaluated during the signature phase. In this way, verifying
the signature correctness has two meanings: (a) the signature somehow verifies the
correct evaluation of a function; and (b) the signature does not reveal which function
got evaluated.

In a real application, often the signing key must be revoked which introduces a
fundamental problem for FS: the function hiding property makes it impossible to know
which signing key was used which means that the verification algorithm cannot effect-
ively alert that a specific signature is generated from a revoked key.

Question E: Towards Stronger Functional Signatures

Is it possible to design a functional signature-like scheme that allows
a more refined function evaluation verification but preserves function
privacy?

Contribution: Paper E introduces the concept of Strong Functional Signatures
(SFS), an FS-like scheme that introduces a public functional verification key that is
publicly available and used during the verification phase. In a realistic application,
such as the one represented in Fig. 10, all such public keys can be collected and pub-
licly maintained by a trusted curator and allow key revocation by simply removing (or
similar) the specific public key. SFS provides function hiding by requiring that both the
signature and any functional verification public key hides which function is evaluated
during the signing phase.

Our instantiation merges the Boneh-Lynn-Shacham’s signature (BLS) scheme [BLS04]
and Fiore-Gennaro’s publicly verifiable computation (VC) scheme [FG12] under a shared
master key pair used for the functional key generation and the final verification. Whenever
generating the functional key pair, our instantiation first generates the VC’s keys for the
requested function and obtains the secret, evaluation and verification keys. Afterwards,
the BLS’s signing keys are generated with the addition of including additional inform-
ation regarding the function and the VC’s secret key. In this way, all the generated

Thesis Contributions 17

Service

Provider
Si

Auth.
Unauth.

TCloud
Service

?

User Uj

pkf1

pkf2

pkf3

f?

pkfi

fi

skfi

Com
pu

te
&

Si
gn

Figure 10: Paper E: Strong functional signatures in the cloud computational authen-
tication scenario.

function’s VC and BLS keys are related to each other.
The SFS’s signing algorithm computes the VC evaluation and computes the BLS

signature of the result which is later verified during the final verification. Our instanti-
ation provides unforgeability by exploiting a design trick: a tamper must be a “wrong
evaluation” which is signed with a BLS’s key. Since the keys are all related, signing the
wrong result will always create a wrong signature and if the BLS signature has correctly
tampered with, then the tampered result must be the correct function evaluation which
is not a tamper.

2.5 Machine Learning as a Tool for Cryptanalysis

Security is a complicated matter that can often be abstracted into “hiding data’s pat-
terns” while preserving some “recovery” property. Cryptanalysis is the research branch
that applies several statistical, algorithmic and/or mathematical methodologies to find
patterns in data to weaken or even destroy any security claim. The simplest form of
such a methodology is based on solving a distinguishing problem in which an algorithm
can classify the inputs between two (or more) different classes. The classical example is
the ciphersuite distinguishing problem in which an algorithm takes in input a ciphertext
and must output “which is the encryption scheme used”.

Machine Learning (ML) is a growing research area that provides a framework for
investigating statistical correlations on specific datasets, often to extrapolate a classifier
later used for analysing a new dataset.

Question F: Modelling Cryptographic Distinguishers Using Machine
Learning

Can machine learning be used to automatize cryptanalysis?

Contribution: Paper F proposes an abstract methodology that allows to effectively
use of ML for creating cryptographic distinguishers and provides some simple technique
to improve the efficiency of such ML classifiers. Our methodology is depicted in Fig. 11.

18 Research Goals for Cryptographic Privacy Preservation

Machine Learning Crypto + Statistics

Simulated Training Datasets

Target
DatasetG0(ŝi)

G1(ŝi)

G0

G1

ML Di

Y

Figure 11: Paper F: Abstract representation of our methodology.

We implement our methodology in an expandable framework and create a simple
proof-of-concept experiment in which we study the possibility of utilizing an ML gen-
erated distinguisher for distinguishing between several National Institute of Standard
and Technology (NIST) Deterministic Random Bit Generators.

2.6 Secure Aggregation for Federated Learning
Federated Learning (FL) is a novel paradigm oriented to allow the aggregation of ML
classifiers between several users with special consideration in achieving high privacy
guarantees. The first privacy-preserving design concept is that each user pre-computes
its ML model locally and it is not required to provide the raw data to the aggregating
server. Only the computed model is used in the aggregation, therefore requiring the
aggregation protocol to protect the user’s model privacy.

Current solutions are focused on providing an interactive protocol between the users
and a single central server that facilitates communication coordination. The interactiv-
ity of the protocol handles users that drop out from the protocol execution because
either they lose their connection or they are maliciously trying to deny the service exe-
cution. Furthermore, the aggregating server is a single-point-of-failure. In an extreme
scenario, an adversary might crash the central server and the protocol will abort without
any recovery possibility.

Our specific interest is to additionally require the aggregating server to provide a
proof that allows the users to verify the correctness of the servers computation.

Question G: Non-Interactive Secure Verifiable Aggregation for Decentral-
ized, Privacy-Preserving Learning

Is it possible to distribute the secure aggregation between several serv-
ers and remove the necessity of the user’s interaction and provide
verification of the server evaluation correctness?

Paper G proposes NIVA, a non-interactive primitive inspired by Shamir’s secret
sharing scheme that allows users to distribute the aggregation between several servers
of which a threshold amount is needed to correctly reconstruct the final output, as
depicted in Fig. 12 We implement NIVA and compare the communicational costs against
some state-of-the-art protocol.

Contribution: our construction extends the standard additive homomorphic secret
sharing scheme by introducing a “verification token” that the user computes and which
is related to the secret input and the servers. During the aggregation phase, the servers
compute and release the secret-sharing partial aggregation value and a proof of correct

Thesis Contributions 19

Nurse

P
ub

lis
h

User Verification Value

Publish

y1

y2

y3

y1

y2

y3

y1

y2

y3

y1

y2

y3

y1

y2

y3

Is the
Result

Correct?
???

Figure 12: Paper G: Several users delegate the secure aggregation of their inputs to
independent servers. A threshold amount of server’s outputs is necessary to publicly
reconstruct and verify the resulting aggregated value.

computation. The verification algorithm requires at least a threshold amount of server
to be used to reconstruct the final aggregation and verify the computation correctness.

The confidentiality of the secret inputs is guaranteed by the underlying secret sharing
scheme and the computational assumption used by the verification token. Differently,
the scheme is proved to never be tamperable, i.e. any adversary is unable to provide
a verifying wrong final aggregation result. The verification algorithm design allows to
easily prove such a strong statement which boils down to an algebraic “trick” : the
existence of an adversarial tamper depends on a pre-defined linear system which is easy
to prove to never have a solution.

2.7 Alternative Communication Channels
The fundamental medium required for communicating is the communication channel.
Different applications might require different features, e.g. we are interested in consistent
channels. This means that the communication transcript is constantly verified during
communication to prevent any future tampering of the past exchanged messages.

Blockchain is a novel technology that allows the creation of such a consistent channel.
The only requirements are the “complex” assumptions necessary to create and use
such a channel. Many blockchains require extensive use of signature schemes, public-
key cryptography, hash functions and a consensus mechanism, often based on game-
theoretic assumptions based on economical strategies.

Question H: Turn Based Communication Channel

Is it possible to create a consistent communication channel based on
a minimal set of assumptions?

Paper H assumes the existence of a timed hash function, i.e. a hash function that is
computable always in the same amount of time ∆. With such a primitive, we describe
a turn-based communication channel (TBCC), depicted in Fig. 13

20 Research Goals for Cryptographic Privacy Preservation

Time

C
on

ti
nu

ou
s

T
BC

C

Alice

Bob

Charlie ∆ ∆

Figure 13: Paper H: A continuous and TBCC channel, the messages are gathered in
“blocks”, and each block, and its set of messages, is confirmed only at the end of each
turn.

Contribution: we base our TBCC protocol on the idea of creating a verifiable
“commitment” that can be verified only after solving a puzzle that requires a designed
amount of time to be solved. Both the parties set up the communication by committing
to a list of sequential puzzles which can only be solved in sequence. In this way, the
parties start communicating committed messages that can only be periodically verified
thus emulating a real turned communication where all the messages are exchanged
periodically.

We provide a construction of the TBCC channel and prove that it provides commu-
nication consistency. This is possible because each exchanged message contains a digest
of the previous communication thus making it impossible to tamper the communication
without being noticed by the other party.

3 Summary and Future Directions

The papers contained in this thesis are testimony of the possibility of improving the
crypto-toolset to incorporate privacy preservation and further allowing more secure
solutions for real applications that requires to carefully handle people’s sensitive data.
Each one of the papers provides a novel cryptographic tool’s instantiation that tackles
a specific data leak, as summarised in Fig. 14.

Inevitably, data will increasingly be consumed by our evolving digital society and
human understanding of data sensitivity will evolve accordingly, posing new security
and privacy challenges to solve. For this reason, the research community must continue
to develop new verifiable cryptographic tools that empower people and protect them
from any harm caused by such a strong data centricity. Security and privacy are long-
term requirements that must be incorporated in all the aspect of our society. More
modest, shorter-term research directions would consider improvements such as:

• Paper A describes the possibility of easily introducing differential privacy in any
cryptographic encryption scheme. On the other hand, it is left open the possibility
to design different crypto-primitives that provides DP by design, e.g. would it be
possible to create a DP signature scheme and which practical opportunities would
it provide?

• Paper B provides a tailored GDPR-oriented solution called HIKE for a specific
realistic application of outsourcing of both storage and computation. A direct

Summary and Future Directions 21

Private Shared Public

Private Shared Public

Paper C

Paper F

Paper H

Security
Breach

Paper A

Direct Breach

Paper B

Paper G
Indirect
Breach

Paper D

Paper E
Coercion
Breach

Figure 14: Paper’s contributions and the correspondent data leak considered.

improvement would consist in either (i) further increasing HIKE’s privacy require-
ments to cover more GDPR principles; (ii) simplifying the construction to im-
prove efficiency; or (iii) introduce precise computation’s verification requirements
to guarantee security and privacy against stronger adversaries.

• Paper C and Paper D focus on the same goal of instantiating a simulatable
verifiable random function. For both the papers, more research is necessary to al-
low them to be efficiently usable in practice. Additionally, different post-quantum
cryptographic assumptions, e.g. isogenies, might be considered with the purpose of
increasing the number of choices and allow the application to select the best-fitting
primitive.

• Paper E provides the concept of strong functional signatures (SFS) and intro-
duces an instantiation of SFS. A possible future direction would be to simplify the
current instantiation, provide an efficient implementation and further investigate
the possibility to define a general transformation that allows the instantiation of
SFS from well-known cryptographic primitives.

• Paper F describes a methodology that enables the creation of crypto-distinguishers
by utilising machine learning. It further provides an experimental analysis and an
implementation. This paper’s next step would be to improve the implementation
by supporting additional machine learning algorithms and design a more practical
and automatised framework. Of different motivation, it is of major interest the
possibility to apply our methodology and check the concrete security of a real
cryptographic system.

• Paper G introduces NIVA which is designed for federated learning’s applications.
Future directions would be focused on improving the primitive’s efficiency and
lowering the application requirements for secure usage of NIVA. From the practical
side, NIVA should be implemented to be usable by the popular machine learning
framework used by developers, e.g. TensorFlow.

• Paper H instantiates the concept of turn based communication channel (TBCC)
and proves that the TBCC protocol achieves communication consistency. The

22 Research Goals for Cryptographic Privacy Preservation

next step for TBCC would be to understand if it formally provides any crypto-
graphic fairness property. Furthermore, a major investigation should be conduc-
ted to incorporate into the protocol more realistic assumptions, e.g. unpredictable
communication delays.

Summary and Future Directions 23

24 Research Goals for Cryptographic Privacy Preservation

A Differentially Private Encryption Scheme

Carlo Brunetta, Christos Dimitrakakis,
Bei Liang, and Aikaterini Mitrokotsa

Chalmers University of Technology, Gothenburg, Sweden

20-th Information Security Conference (ISC) 2017
Ho Chi Minh city (Viet Nam)

Paper A - A Differentially Private Encryption Scheme 27

Abstract: Encrypting data with a semantically secure cryptosystem guarantees that
nothing is learned about the plaintext from the ciphertext. However, querying a data-
base about individuals or requesting for summary statistics can leak information. Dif-
ferential privacy (DP) offers a formal framework to bound the amount of information
that an adversary can discover from a database with private data, when statistical
findings of the stored data are communicated to an untrusted party. Although both
encryption schemes and differential private mechanisms can provide important privacy
guarantees, when employed in isolation they do not guarantee full privacy-preservation.

This paper investigates how to efficiently combine DP and an encryption scheme
to prevent leakage of information. More precisely, we introduce and instantiate dif-
ferentially private encryption schemes that provide both DP and confidentiality. Our
contributions are five-fold, we: (i) define an encryption scheme that is not correct with
some probability αm1,m2 i.e., an αm1,m2 -correct encryption scheme and we prove that it
satisfies the DP definition; (ii) prove that combining DP and encryption, is equivalent to
using an αm1,m2 -correct encryption scheme and provide a construction to build one from
the other; (iii) prove that an encryption scheme that belongs in the DP-then-Encrypt
class is at least as computationally secure as the original base encryption scheme; (iv)
provide an αm1,m2 -correct encryption scheme that achieves both requirements (i.e., DP
and confidentiality) and relies on Dijk et al.’s homomorphic encryption scheme (EURO-
CRYPT 2010); and (v) perform some statistical experiments on our encryption scheme
in order to empirically check the correctness of the theoretical results.

Keywords: Differential privacy, Encryption, Homomorphic encryption

28 Paper A - A Differentially Private Encryption Scheme

1 Introduction

The Internet has evolved into a powerful platform interconnecting billions of users
and has changed the way we do business, communicate with our friends, and perform
our financial transactions. In this new communication paradigm, we leave our digital
fingerprints everywhere: medical records, financial records, web search histories, and
social network data. There is no doubt that the privacy implications of this increased
connectivity can lead to oppressive electronic data surveillance.

Let us consider a real-world scenario: a company sells electricity to different custom-
ers in large geographical areas. The company owns and distributes a smart-metering
grid [ETLP13] in order to offer the lowest price possible for its customers. Alice, that
wants to pay as less as possible for her electrical consumption, signs a contract with the
company by providing her personal information and accepts to install in her home dif-
ferent sensors that will measure the electrical consumption during the day and transmit
this data to the electricity company. The company collects data from all its customers
in an entire geographical region and, by performing statistical analysis on the collected
data, is able to optimize the electrical supply distribution. Alice worries that her data
may be used in a malicious way and wants to get guarantees that her privacy will be
respected. She is aware that by analysing the data of her power consumption, someone
may deduce private information such as when she is at home and what habits she may
have. She wants her personal information to be confidential (encrypted) when they are
used by a third party but she accepts that the company may use her data for statistical
analysis in order to optimise the supply distribution.

This particular problem might raise different privacy concerns that we categorize
into two classes, as represented in Figure (15):

• An individual privacy breach can be described as the act of deducing private
information for an individual from some public information.
In this case, the electricity company can deduce Alice’s habits just by observing
her power consumption measurements.

• A group privacy breach can be defined as the act of deducing a single individual
private information from public statistical information of groups of people.
Let us suppose that the electricity company offers an open-source interface where
everyone can query and obtain statistical information about the company’s cus-
tomers. The only limitation is that the statistics are not computed if the sample
of customers is lower than five people.
Eve wants to find out Alice’s habits for malicious reasons. To achieve that she
checks on every social network and finds out that Alice is a student and she lives in
a one-room apartment. Eve starts querying the company’s database by asking for
the “average daily power consumption of a student that lives in an one-room apart-
ment” and does not obtain any information because the sample is too small. Then,
Eve asks for the “average daily consumption of people that live in an one-room
apartment” and the “average daily consumption of people that live in an one-room
apartment that are not students”. Thus, Eve can deduce some approximation of
Alice’s habits by computing the difference between the two values and obtain the
“average daily consumption of a student that lives in an one-room apartment” in
which Alice is contained.

In this paper, we do not deal with the problem of inferring some private information
about an individual (such as habits) from other private data, such as consumption,
from a trusted third party (e.g., a company). However, we care about inferring private
information from publicly available data published by a third party (e.g., the billing

Introduction 29

Group 1

Group 2

Private Data

Group 1

Statistic

Group breach

Public Data

Public Data

Group 2

Statistic

Public Data Private DataPublic Data Private Data

USER

Individual breach

Figure 15: Individual and group privacy breaches.

information). To protect against either of the two types of privacy breaches, differ-
ent notions of privacy and methodologies that preserve privacy have been defined in
the literature such as t-closeness [LLV07], k-anonymity [EED08], ℓ-diversity [GKM11].
However, these notions of privacy have been proven to be weak, since even when they
are employed information leakage and de-anomyization attacks can still be performed.

Differential privacy (DP) introduced by Dwork et al. [Dwo06], addresses the problem
of learning as little as possible about an individual, while learning useful information
about a population. It offers a formal framework that can be used to bound the amount
of info that an adversary can discover from a database that contains private data, when
statistical findings of the stored data are communicated to an untrusted party. More
precisely, DP assumes the existence of a data aggregator, who is publishing statistics
about a population. In other words, DP is a formalism that allows statistical analysis
of private datasets while minimizing a group privacy breach. Informally, by employing
a DP-mechanism to respond to a query, we are publishing noisy statistics about a
dataset. The amount of noise should depend on the sensitivity of the queried statistic
to the input, i.e., “how much the query result would change if one single entry is changed
or removed?”. This means that if the query result will change a lot, we have to introduce
more noise in order to “hide” the influence of the changed/removed entry in the query
result. Otherwise, a drop in the query result will reveal partial information on the
modified entry.

Complementary, a semantically secure encryption scheme guarantees the confiden-
tiality of the encrypted information i.e., no-one can decrypt and obtain the original
message of a ciphertext. As a plus, an homomorphic encryption scheme [Gen09, Mei12]
allows the computation of particular functions on the encrypted data. Informally, we
can encrypt our messages and then compute a particular function on the ciphertext
and obtain a new ciphertext that will be decrypted to the function computed on the
original plaintext messages.

The solution required to avoid any possible information leakage should guarantee
privacy breach resistance (provided by the DP framework) and confidentiality of the
encrypted data (provided by a semantically secure encryption scheme). Each of these
frameworks, if employed alone, does not provide full privacy guarantees. In this paper,
we investigate for the first time, how we may achieve both differential privacy and
confidentiality and introduce the concept of a differentially private encryption scheme.

Related Work: Privacy-preservation has received a lot of attention in the literature
and multiple semantically secure crypto systems as well as differential private mech-
anisms have been proposed. However, existing work on encrypted computation and
differential privacy has proceeded mainly in isolation. In order to avoid all possible

30 Paper A - A Differentially Private Encryption Scheme

information leakage, while guaranteeing both confidentiality and differential privacy,
the most common solution is to process the plaintext data in a DP-mechanism and
then encrypt the result using a secure homomorphic encryption scheme. The cipher-
text will guarantee confidentiality until the decryption phase, while the plaintext mes-
sage will satisfy the DP definition. In the literature, it is possible to find different
solutions [JLE14, BNO11, GJ11] that use this paradigm: a DP-mechanism and an
encryption scheme; used sequentially. We will define these solutions that combine a
DP-framework and an Encryption-framework as an element in the DP-then-Encrypt
class (formally defined in Def. (5)). Our solution has as a starting point Dwork et
al.’s definition of an α-correct encryption scheme [DNR04] i.e., an encryption scheme
that can wrongly decrypt (or encrypt) a message with some probability bounded by α.
Dwork et al. [DNR04] defined an algorithm that takes an α-correct encryption scheme
and returns a new encryption scheme, built using the α-correct one, that is correct
(or almost-correct). We provide a more detailed definition of α-correctness, where we
are interested in the precise probability of encrypting a message m1 and obtaining a
message m2. Our definition is the first result that provides the sufficient conditions
for an α-correct encryption scheme in order to achieve ϵ-DP. In order to build a con-
crete instantiation of a differentially private encryption scheme, we rely on Dijk et al.’s
[vGHV10] homomorphic public-key encryption scheme over the integers.

Our Contributions: Our main idea is defining the class Encrypt+DP that contains
all the encryption schemes that are differential private and achieve privacy and confid-
entiality atomically, as represented in Figure (16). As a starting point, we define an
αm1,m2 -correct encryption scheme (Def. (4)) that will permit an encryption scheme to
be not correct, i.e., the decryption of the encryption of a specific message m1 can be
a different message m2 with probability αm1,m2 . From this definition, we prove that
an αm1,m2 -correct 1-bit encryption scheme satisfies the Dwork’s DP definition [Dwo06]
with ϵ(αm1,m2)-DP, i.e., the DP parameter ϵ will be strongly related to the probabilit-
ies αm1,m2 of the encryption scheme. Then, we prove in Proposition (2) that the more
general N -element encryption scheme achieves ϵ(αm1,m2)-DP.

mi
Generating
DP-noise

ri Encryption ci = Enc(mi + ri)

Encrypted
and
Differential Private
Data

mi
α-correct
Encryption ci = Enc′(mi)

Figure 16: The difference between the DP-then-Encrypt (on the top) and our solution
(at the bottom).

Furthermore, we formally define the DP-then-Encrypt and Encrypt+DP classes. As
our main result, we prove in Proposition (4) that the two classes are equivalent and
provide a construction to switch between them. This means that our solution of an
αm1,m2 -correct encryption scheme can be re-written with a DP-then-Encrypt encryption
scheme.

As the second main contribution, in Lemma 1, we reduce the security of a DP-

2. PRELIMINARIES 31

then-Encrypt encryption scheme to the security of the correct encryption scheme frame-
work. The considered security-computational model is built around a non-interactive
adversary that has access only to the public key and a particular ciphertext and it
guesses the original plaintext. This security model is a necessary condition in order to
satisfy more complex security models like IND− CPA, IND− CCA, etc.

The last contribution is a concrete αm,m-correct encryption scheme inside Encrypt+DP
. We modify the Dijk et al. [vGHV10] integer homomorphic encryption scheme and we
show how to compute the probability αm,m. As a final point, we exploit the structure
of the scheme and obtain the correspondent DP-then-Encrypt encryption scheme that
relies on Dijk et al.’s homomorphic encryption scheme.

Paper Organisation: The paper is organised as follows. In Section (2), we describe
the notation used throughout the paper and the definitions we are based on. In Sec-
tion (3), we give our definition of αm1,m2 -correct encryption schemes and prove that
it has ϵ(αm1,m2)-DP. In Section (4), we show the equality between our framework,
Encrypt+DP , and the DP-then-Encrypt . The proof will sketch an algorithm that trans-
forms a correct encryption scheme into an αm1,m2 -correct encryption scheme. We define
the security-hardness model and prove the security-hardness of a DP-then-Encrypt en-
cryption scheme with respect to the corresponding base (correct) encryption scheme. In
Section (5), we provide an instantiation of an αm,m-correct encryption scheme starting
from Dijk et al.’s [vGHV10] encryption scheme and we prove its security.

2 Preliminaries

In this section, we will define the notation used in the paper and the basic definitions
of the notions we employ in the rest of the paper.

2.1 Notation
We always denote with M the message-space. We denote with K = Ksk×Kpk the key-
space where Ksk is the secret-key-space and Kpk is the public key-space and with C the
ciphertext-space. N is the set of natural numbers (i.e., integers z ≥ 0). Then we define
intervals with [a, b] = {a, a+1, · · · , b} and (a, b) = [a, b]\{a, b}. We denote with 1A the
identity function on the set A. We define with the symbol ≃, a probabilistic equality
between functions, i.e., f(x) ≃ g(x) means Pr [f(x) = g(x)] = p for some p ∈ [0, 1]. We
denote with negl(n) a negligible function. We denote with a (mod n) the modulo n of
a in the interval

(
−n

2
, n
2

]
. We denote with UA the uniform distribution over the set A.

We denote M times the cartesian product of a set A as AM and the range of a function
f with domain X as Rg(f) := {f(x) : x ∈ X}. For a set X, we define with P(X) the
power-set of X, i.e., the set of all the subset of X.

2.2 Basic Definitions
In order to define differential privacy, we will define a data-set:

Definition 1 (Dataset). A dataset D is defined on an alphabet A so that either D ∈ An
for a fixed dataset size n, or D ∈ A∗ with A∗ =

∪∞
i=0A

i being the union of all product
sets of A.

Definition 2 (ϵ-differential privacy [Dwo06]). A randomized function Q is ϵ-differentially
private if for all data-sets D1 and D2 differing on at most one element, i.e., the ℓ0-
distance between D1 and D2 is at most 1, and all S ⊆ Rg(Q), it holds

Pr [Q(D1) ∈ S] ≤ exp(ϵ) · Pr [Q(D2) ∈ S]

32 Paper A - A Differentially Private Encryption Scheme

Remark 1. For finite ϵ, we must have that the distribution of a DP-mechanism has
always the same range, i.e., for every D0, D1 ⊂M it holds Rg(Q(D0)) = Rg(Q(D1)).

In our construction, we will use messages as databases and we will always use the
ℓ0-distance; for two different messages m,m′, the distance is always 1.

Below we provide Dwork et al.’s [DNR04] definition of an α-correct (public-key)
encryption scheme:

Definition 3 (Dwork et al.’s α-correct public-key encryption scheme [DNR04]). Let
(G,E,D) be any public-key encryption scheme and α : N→ [0, 1] an arbitrary function.

(a) (G,E,D) is all-keys α-correct if for every pair (sk, pk) generated by G on input
1λ, it holds that Pr [Dsk(Epk(m)) ̸= m] ≤ 1 − α(λ), where the probability is taken
over the choice of m ∈ Un, and over the random coins of E and D.

(b) (G,E,D) is almost-all-keys α-correct if with probability 1− negl(λ) over the ran-
dom coins of G used to generate (sk, pk) on input 1λ, it holds that

Pr [Dsk(Epk(m)) ̸= m] ≤ 1− α(λ)

where the probability is taken over the choice of m ∈ Un and over the random
coins of E and D.

(c) (G,E,D) is almost-all-keys perfectly correct if with probability 1 − negl(λ) over
the random coins of G used to generate (sk, pk) on input 1λ, it holds that

Pr [Dsk(Epk(m) ̸= m] = 0

, where the probability is taken over the choice of m ∈ Un and over the random
coins of E and D.

3 Our Definition of αm1,m2-correct Encryption Scheme

In this section, we define an αm1,m2 -correct encryption scheme and compare it to the
Dwork et al.’s Definition (3). Then, we prove that an αm1,m2 -correct encryption scheme
satisfies the definition of differential privacy with respect to the function Q := D ◦E ≃
1M. We start by presenting and describing the main constructions and properties for
the case of a 1-bit encryption scheme, as the simplest example possible, and after that
we generalize the result to an N -element encryption scheme.

3.1 Definition
Our goal is to formally define the possibility that an encryption scheme can wrongly
decrypt a message with some well defined probability.

Definition 4 (αm1,m2 -correctness encryption scheme). Let (G,E,D) be an encryption
scheme defined over (M,K, C) as

• Generation algorithm: let λ ∈ N be a security parameter. G is defined as
a probabilistic algorithm that given a security parameter 1λ, returns a key-pair
(sk, pk) ∈ K.

• Encryption algorithm: let m ∈ M, pk ∈ Kpk and c ∈ C. E is defined as an
algorithm that takes as input a public key pk and a message m, and returns a
ciphertext c.

• Decryption algorithm: let m ∈ M, sk ∈ Ksk and c ∈ C. D is defined as an
algorithm that given a secret key sk and a ciphertext c, returns a plaintext m.

Our Definition of αm1,m2
-correct Encryption Scheme 33

(G,E,D) is said to be an αm1,m2 -correct encryption scheme if, for all m1,m2 ∈M,
a fixed λ ∈ N and a fixed key-pair (sk, pk)← G(1λ), it holds

αm1,m2((sk, pk)) := Pr [D(sk, E(pk,m1)) = m2]

If for all m ∈M it holds αm,m = 1, then (G,E,D) is said to be a correct encryption
scheme.

In simple words, in an αm1,m2 -correct encryption scheme, the probability of en-
crypting m1 and decrypting into m2 using the key-pair (sk, pk) is equal to αm1,m2 .

Remark 2. From the definition above, it is easy to see that every encryption scheme
is an αm1,m2 encryption scheme.

Remark 3. The αm1,m2((sk, pk)) values are strongly connected with the choice of
(sk, pk). We will abuse notation and drop the key-pair since in our arguments, we
will always fix some key-pair (sk, pk).

Remark 4. Our αm1,m2 -correctness (Def. 4) and Dwork et al.’s definition (Def. 3)
describe the same encryption schemes.

Proof. • Our definition ⇒ Dwork et al.’s definition:
Let (G,E,D) be any αm1,m2 -correct public-key encryption scheme. Let us con-
sider

α = max
m∈M,(sk,pk)∈K

αm,m((sk, pk))

Let (sk, pk) ∈ K be any possible random key and m ∈ M any possible random
message.

1− Pr [Dsk(Epk(m)) ̸= m] = Pr [Dsk(Epk(m)) = m] = αm,m((sk, pk)) ≤ α

And so, we have that (G,E,D) is an α-correct encryption scheme in Dwork et
al.’s Definition (3).

• Our definition ⇐ Dwork et al.’s definition: Follows directly from Remark (2)

Dwork et al.’s definition describes a global upper bound on the correctness probab-
ility of an encryption scheme, while our definition defines the precise values of αm1,m2

of the encryption scheme.

3.2 Construction of an αm1,m2
-correct 1-bit Encryption Scheme

Fix M = {0, 1}. Let (G,E,D) be an αm1,m2 -correct encryption scheme defined over
(M,K, C). Let us fix a key pair (sk, pk) ← G(1λ) and let Q(m) = D(sk, E(pk,m)). It
holds:

Rg(Q) = {0, 1} D0 ={0}, D1 = {1}
S ∈ P(Rg(Q)) = {∅, {0} = S0, {1} = S1, {0, 1} =M}

Q(m) = D(sk, E(pk,m)) ≃ m ∀m1,m2∈MPr [Q(m1) = m2] = αm1,m2

Proposition 1. An αm1,m2 -correct 1-bit encryption scheme such that for all m1,m2 ∈
M it holds that Pr [D(sk, E(pk,m1)) = m2] = αm1,m2 , achieves ϵ(αm1,m2)-differential
privacy where

ϵ(αm1,m2) := inf

{
ϵ :

eϵ ≥ α0,0

α1,0
, eϵ ≥ α0,1

α1,1

eϵ ≥ α1,0

α0,0
, eϵ ≥ α1,1

α0,1

}

34 Paper A - A Differentially Private Encryption Scheme

Proof. Let us prove that any αm1,m2 -correct encryption scheme satisfies the ϵ-DP defin-
ition.

From the Definition (2), we can state that Pr [Q(Di) ∈ Sj] means that we encrypt
the bit i and we decrypt it into the bit j. We can impose the DP definition in all
possible cases in order to study the differential privacy coefficient ϵ:

• If S = ∅, all the probabilities are 0, and so the ϵ-DP definition holds for every
ϵ ∈ R since 0 ≤ 0

• If S = {0, 1} = M, all the probabilities are 1, and so the ϵ-DP definition holds
since 1 ≤ eϵ and ϵ ≥ 0

• If S = {0} = S0:

– Pr [Q(D0) ∈ S0] ≤ eϵPr [Q(D1) ∈ S0] becomes α0,0 ≤ eϵα1,0 =⇒ eϵ ≥ α0,0

α1,0

– Pr [Q(D1) ∈ S0] ≤ eϵPr [Q(D0) ∈ S0] becomes α1,0 ≤ eϵα0,0 =⇒ eϵ ≥ α1,0

α0,0

• If S = {1} = S1:

– Pr [Q(D1) ∈ S1] ≤ eϵPr [Q(D0) ∈ S1] becomes α1,1 ≤ eϵα0,1 =⇒ eϵ ≥ α1,1

α0,1

– Pr [Q(D0) ∈ S1] ≤ eϵPr [Q(D1) ∈ S1] becomes α0,1 ≤ eϵα1,1 =⇒ eϵ ≥ α0,1

α1,1

We can conclude that for every αm1,m2 ∈ [0, 1], we achieve ϵ-DP where ϵ has to be
in the convex solution set E(αm1,m2) defined as:

for αm1,m2 ∈ [0, 1] E(αm1,m2) :=

{
ϵ :

eϵ ≥ α0,0

α1,0
eϵ ≥ α0,1

α1,1

eϵ ≥ α1,0

α0,0
eϵ ≥ α1,1

α0,1

}

from which we can define the curve

ϵ(αm1,m2) = inf E(αm1,m2)

that defines the minimum ϵ such that the ϵ-DP definition holds for the encryption
scheme.

Proposition (1) is a special case of Proposition (2).

3.3 Construction of an αm1,m2
-correct N-Elements Encryption Scheme

Let #M = N be the message space with uniform distribution of being transmitted,
i.e., for all m ∈ M, Pr [M ∈ {m}] = 1

#M . Fix a key-pair (sk, pk) and then for all
m1,m2 ∈M it holds

αm1,m2 = Pr [D(sk, E(pk,m1)] = m2 | m1)

Proposition 2. An N-element αm1,m2 -correct encryption scheme such that for all
m1,m2 ∈ M it holds that Pr [D(sk, E(pk,m1)) = m2] = αm1,m2 . Then, the encryption
scheme achieves ϵ(αm1,m2)-differential privacy where

ϵ(αm1,m2) := inf

{
ϵ

∣∣∣∣∣ ∀D0, D1 ∈M, S ⊆M.

∑
m2∈S αD0,m2∑
m2∈S αD1,m2

≤ eϵ
}

Our Definition of αm1,m2
-correct Encryption Scheme 35

Proof. Let Q = D ◦ E and S ⊆M as before. Then, Pr [Q(D0) ∈ S] =
∑
m2∈S αD0,m2 .

Imposing the DP definition, we have that for all D0, D1 ∈ M such that the two
elements are different and for every S ⊆M it holds:

Pr [Q(D0) ∈ S] ≤ eϵPr [Q(D1) ∈ S] =⇒
∑
m2∈S

αD0,m2 ≤ e
ϵ

(∑
m2∈S

αD1,m2

)

We can manipulate the equation and obtain
∑

m2∈S αD0,m2∑
m2∈S αD1,m2

≤ eϵ

We define the convex set

E(αm1,m2) :=

{
ϵ

∣∣∣∣∣ ∀D0, D1 ∈M, S ⊆M.

∑
m2∈S αD0,m2∑
m2∈S αD1,m2

≤ eϵ
}

The value ϵ(αm1,m2) = inf E(αm1,m2) will satisfy the DP-definition.

3.4 Fix ϵ, find αm1,m2

The parameters ϵ and αm1,m2 are dependent one from the other since for allD0, D1 ∈M
and for all S ⊆M, it holds ∑

m2∈S αD0,m2∑
m2∈S αD1,m2

≤ eϵ (1)

The goal of finding the best αm1,m2 that achieves a fixed ϵ-DP depends on prac-
tical requirements and conditions that we want to impose on the probabilities αm1,m2 ,
i.e., “maximizing the difference between two different messages” or “having a specific
probability distribution”.

For completeness, we will provide a simple solution in a particular case.

Proposition 3. Let αm1,m2 be the probabilities of an N-element encryption scheme,
where for all m ∈ M, it holds αm,m = α and for all m′ ∈ M with m′ ̸= m, it holds
αm,m′ = β < α. If α ≥ (N − 1)β, then the scheme achieves log

(
α
β

)
-DP.

Proof. In order to prove the thesis, we have to find the D0, D1, S that maximize the
left side of Equation (1). We can consider the polynomials fα(x) = α+xβ and fβ(x) =
β + xβ. From the hypothesis, we have that fα(x) ≥ fβ(x) for all x ∈ R and x ≥ 0.
In particular, this is true for the integer values between 0 and N − 1. Since fα(x)

fβ(x)
is

a decreasing function for all x ∈ R and x ≥ 0, we can conclude that for i ∈ [0, N − 1]
integers, it holds:

α

β
=
fα(0)

fβ(0)
≥ fα(i)

fβ(i)
≥ fα(i+ 1)

fβ(i+ 1)
≥ · · · ≥ fα(N − 1)

fβ(N − 1)

β

α
=
fβ(0)

fα(0)
≤ fβ(i)

fα(i)
≤ fβ(i+ 1)

fα(i+ 1)
≤ · · · ≤ fβ(N − 1)

fα(N − 1)
=

(N − 1)β

(N − 2)β + α
(2)

From Equation (2) and since α
β
≥ β

α
from the hypothesis, we have

(N − 1)β

(N − 2)β + α
≤ α

(N − 2)β + α
≤ α

β

and, in Equation (1) ∑
m2∈S αD0,m2∑
m2∈S αD1,m2

≤ α

β
≤ eϵ (3)

36 Paper A - A Differentially Private Encryption Scheme

We can so conclude that the minimal ϵ for which the equation holds is log
(
α
β

)
and

so the N -element encryption scheme will achieve log
(
α
β

)
-DP.

4 Equality Between DP-then-Encrypt and Encrypt+DP

In this section, we define the two main methods of combining an encryption scheme with
a differential private mechanism: (i) the DP-then-Encrypt and (ii) the Encrypt+DP
. We then prove a proposition on the equivalence between the DP-then-Encrypt and
the Encrypt+DP classes. After this, we prove that combining a differential privacy
framework with a correct encryption scheme is at least as computationally secure as
the relying encryption scheme.

Definition 5. Define the DP-then-Encrypt class as the set of all the encryption schemes
(G′, E′, D′) such that

G′(1λ) := G(1λ) E′(pk,m) := E(pk,Q(m)) D′(sk, c) := D(sk, c)

for some (G,E,D) correct encryption scheme on (M,K, C) and Q ≃ 1M a DP-mechanism.

It is trivial that D′(sk, E′(pk,m)) = Q(m).

Definition 6. Define the Encrypt+DP class as the set of all the αm1,m2 -correct encryp-
tion schemes (Ĝ, Ê, D̂) on (M,K, C). From the Proposition (2), we have that (Ĝ, Ê, D̂)
is ϵ(αm1,m2)-DP and it holds D̂(sk, Ê(pk,m)) ≃ 1M(m).

In a nutshell, the DP-then-Encrypt class contains all the different combinations of
the identity map as a DP-mechanism and a correct encryption scheme. On the other
hand, the Encrypt-then-DP achieves the identity map as a DP-mechanism directly in
the αm1,m2 -correct encryption scheme used.

In order to prove the equality between the two classes, we define a probability “per-
mutation” as:

Definition 7. Let m1,m2 ∈ M. Let us denote a probability “permutation” π as the
random variable on M with measure probability of the event “permute the message m1

into the message m2” defined as Pr [π(m1) = m2] = αm1,m2 .

Remark 5. Let π be a probability permutation. Then, π is a DP-mechanism. This
means it is a ϵ(αm1,m2)-DP mechanism (or it achieves ∞-DP).

Proposition 4. The DP-then-Encrypt class is equivalent to the Encrypt+DP class.

Proof. • DP-then-Encrypt ⊆ Encrypt+DP
Let (G′, E′, D′) be a DP-then-Encrypt encryption scheme. Let us fix a key pair
(sk, pk) ← G′(1λ). Trivially using Remark (2), there exists an αm1,m2 ∈ [0, 1]
such that for all m1,m2 ∈M it holds:

Pr
[
D′(sk, E′(pk,m1) = m2

]
= Pr [Q(m1) = m2] = αm1,m2

From the Definition (4), (G′, E′, D′) is an αm1,m2 -correct encryption scheme and
so from Proposition (2), we have that (G′, E′, D′) is contained in the class En-
crypt+DP of Definition (6).

Equality Between DP-then-Encrypt and Encrypt+DP 37

• DP-then-Encrypt ⊇ Encrypt+DP
Let (Ĝ, Ê, D̂) be an αm1,m2 -correct encryption scheme such that D̂(sk, Ê(pk,m)) ≃
1M(m). For every m1,m2 ∈M, we define the random variable π :M→M as

Pr [π(m1) = m2] := Pr
[
D̂(sk, Ê(pk,m1)) = m2

]
= αm1,m2

π is a probability permutation as in Definition (7) and for Remark (5), we have
that π is a DP-mechanism.
Let us define (Ĝ, E,D) a correct encryption scheme such that:

– Ĝ is the same key generator as the αm1,m2 -correct encryption scheme
– E : K×M→ C is an encryption algorithm
– D : K×C →M is a decryption algorithm

and for all (sk, pk)← Ĝ(1λ), it holds that for all m ∈M

Pr [D(sk, E(pk,m)) = m] = 1

We can claim that E,D always exist and we can consider any injective function
ϕ :M→ C with left inverse ϕ−1. Let us define:

E(pk,m) := ϕ(m) D(sk, c) := ϕ−1(c)

For (Ĝ, E,D), we have

Pr [D(sk, E(pk,m)) = m] = Pr
[
ϕ−1(ϕ(m)) = m

]
= Pr [m = m] = 1

In order to conclude, we need to prove that (Ĝ, E,D) with π as in Definition (5),
acts like an encryption scheme (G′, E′, D′) that is contained in the Encrypt+DP
class of Definition (6). Fix a key pair (sk, pk)← Ĝ(1λ):

Pr
[
D̂(sk, Ê(pk,m1)) = m2

]
= αm1,m2

= Pr [π(m1) = m2]

= Pr
[
ϕ−1(ϕ(π(m1))) = m2

]
= Pr [D(sk, E(pk, π(m1))) = m2]

= Pr
[
D′(sk, E′(pk,m1)) = m2

]

We will now define a concept of security-hardness with respect to an adversary
without specifying the computational model used.

Definition 8. The adversary A for an encryption scheme (G,E,D) is an algorithm
that takes the public key2 and a ciphertext and it outputs a guess m′ for the message m.

A : Kpk×C →M A(pk, E(pk,m)) 7→ m′

An encryption scheme (G,E,D) is said to be security-hard with respect to the adversary
A (in some computational model) if

Pr [A(pk, E(pk,m)) = m] ≤ 1

#M + negl

2It is possible to give a pure symmetric key encryption scheme definition but we do not need it.

38 Paper A - A Differentially Private Encryption Scheme

Informally, we defined the simplest adversary possible whose goal is to guess the
correct decryption of a ciphertext given all the public information possible. In order
to obtain a general result, we do not impose any complexity-hardness assumption.
The security-hardness adversary is a weaker adversary with respect to the ones from
IND−CPA, IND−CCA (and so on). On the other hand, for an encryption scheme, being
security-hard is a necessary condition in order to achieve any security requirement: the
security-hardness adversary can be used as a distinguisher in a more structured security
model.

Lemma 1. Let (G,E,D) be a correct encryption scheme which is security-hard. Let
Q ≃ 1M DP-mechanism. Then the combination of Q with (G,E,D), which is in the
DP-then-Encrypt class, is security-hard. In other word, the security-hardness of the
combination Q with (G,E,D) is at least computationally hard as the security-hardness
of (G,E,D).

Proof. We have to show and prove:

(a) Reduce every instance of a (G,E,D) correct encryption scheme to an instance in
the DP-then-Encrypt class.

(b) We prove the lemma by contradiction and Reductio ad absurdum: If there exists
an adversary A with non-negligible advantage for the DP-then-Encrypt instance,
there will exist an adversary B with non-negligible advantage for the (G,E,D)
correct encryption scheme. Let us suppose that there exists A with non-negligible
advantage, and let us suppose that all B have negligible advantage. Then we prove
that it is a contradiction, and so we conclude.

The reduction is trivial: we can just consider as the instance in the DP-then-Encrypt
class, (G,E,D) encryption scheme with the deterministic identity map as the DP-
mechanism.

For a fixed key (sk, pk) ← G(1λ), suppose there exists an adversary A for the DP-
then-Encrypt scheme, it means A(m) := A(pk, E(pk,Q(m))) will output the guess m′
and the guess will be correct with probability 1

#M + δ with δ > 0 non-negligible.
Formally Pr [A(pk, E(pk,Q(m))) = m] = 1

#M + δ

Let us suppose that for all the adversaries B of the original scheme such that B(m) :=
B(pk, E(pk,m)), we have Pr [B(pk, E(pk,m)) = m] = 1

#M + ϵ where ϵ > 0 is negligible.
From the probability independence between the DP-mechanism Q and the encryp-

tion scheme (G,E,D) we have

1

#M + δ = Pr [A(m) = m] = Pr [B(m) = m | Q(m) = m]

= Pr [B(m) = m]Pr [Q(m) = m]

≤ Pr [B(m) = m] =
1

#M + ϵ

Absurd. So there exists an adversary B with non-negligible advantage.3

5 Example of an αm1,m2-Correct Homomorphic Encryption Scheme

In this section, we introduce a variation of the Dijk’s et al. public key integer homo-
morphic encryption scheme [vGHV10] by only introducing a new parameter ξ that will
be used to increase the noisy randomness of the encryption scheme. Then, we show how

3Take for example adversary A.

Example of an αm1,m2
-Correct Homomorphic Encryption Scheme 39

to compute the probabilities αm1,m2 that will prove that the scheme is αm1,m2 -correct.
At the end, we show the connection between the original and the modified scheme and
prove the security-hardness of the modified one.

Definition 9 (Variation of the Dijk et al. public key homomorphic encryption scheme).
Let M = {0, 1} and let γ, η, ρ, τ be the four parameters defined in the original scheme
such that all the security constraints hold. Let ξ be an additional parameter required for
the variation.
Let (G,E,D) be defined as:

• G(1λ) : randomly pick p ∈ [2η−1, 2η) and p odd.
For the public key, for all i ∈ 0..τ sample

xi ∈ Dγ,ρ(p) =
{
pq + r : q ∈ U

(
Z ∩

[
0,

2γ

p

))
, r ∈ U(Z ∩ (−2ρ, 2ρ))

}
and relabel so that x0 is the greatest. Restart until x0 is odd and (x0 (mod p)) ∈(
− p

2
, p
2

]
is even.

Define pk := {x0, ... , xτ} as the public key and sk := p as the secret key.

• E(pk,m): choose at random S ⊆ [1, τ] and a random integer r ∈ (−2ρ
′+ξ, 2ρ

′+ξ).
The difference with respect to the original scheme is that ξ is present in the
interval-bounds exponents. Output the ciphertext c =

(
m+ 2r + 2

∑
i∈S xi

)
(mod x0)

• D(p, c): output (c (mod p)) (mod 2)

In order to prove that the scheme achieves some α-correctness with α ̸= 1, fix a
random S and observe that

m+ 2r + 2
∑
i∈S

xi = m+ 2r + 2
∑
i∈S

pqi + ri

= m+ 2

(
r +

∑
i∈S

ri

)
+ p · 2

∑
i∈S

qi = m+ 2R+ pQ

where Q ∈ Z and R will be contained in a subset of the integers

AS :=
(
−(#S · 2ρ + 2ρ

′+ξ), (#S · 2ρ + 2ρ
′+ξ)

)
⊆ Z

For this reason, for a fixed S, we can reduce the computation of αm,m as a combinatorial
problem:

α :=
#
{
r : r ∈

(
−2ρ

′+ξ, 2ρ
′+ξ
)
|
∣∣2 (r +∑i∈S ri

)∣∣ < p
2

}
#S · 2ρ+1 + 2ρ′+ξ+1

For the right parameter ξ, we can obtain that the encryption scheme is an αm,m-
correct encryption scheme.

Remark 6. It is important to notice that using a different S will change the probability
αm,m. You can think of it as using a different public key for the encryption algorithm.

Consider a fixed S and the function ⌊x⌉ = closest integer to x. We can compute
∆ = 2 ·

∑
i∈S ri and if we consider ξ̃ as the bound for the noise r, we can define the

function

F (ξ̃,∆) =

∫ ξ̃+∆

−ξ̃+∆

⌊
x

p

⌉
(mod 2) dx

2 · ξ̃
∈ [0, 1]

40 Paper A - A Differentially Private Encryption Scheme

that represents the correctness probability. We have the trivial properties

F (ξ̃, 0) =
1

2
lim
ξ̃→∞

F (ξ̃,∆) =
1

2
(4)

In order to prove that our modified scheme is secure, we reduce the security-hardness
of our scheme to the security of the original Dijk et al.’s encryption scheme. From the
Proposition (4) on the class equality between Encrypt+DP and DP-then-Encrypt we will
transform our modified scheme into the Dijk et al.’s encryption scheme in the DP-then-
Encrypt class.

Remark 7. We can observe that r is randomly picked from
(
−2ρ

′+ξ, 2ρ
′+ξ
)

. We will

now consider a random r′ ∈ (−2ρ
′
, 2ρ

′
) and rewrite r = r′ + r̂ for some r̂ ∈ Z. At this

point, we can rewrite the general encrypted message as

m+ 2r + 2
∑
i∈S

xi = m+ 2(r′ + r̂) + 2
∑
i∈S

xi = (m+ 2r̂) + 2r′ + 2
∑
i∈S

xi (5)

where r′ and xi are regular values from the original encryption scheme. During the
decryption phase, we will obtain:

(
m+ 2r + 2

∑
i∈S

xi

)
(mod p) (mod 2) =

Equation (5) =

(
(m+ 2r̂) +

(
2r′ + 2

∑
i∈S

xi

))
(mod p) (mod 2)

Original scheme’s values = (m+ 2r̂) (mod p) (mod 2)

= m⊕ (2r̂ (mod p) (mod 2))

From this equality, the message m can be decrypted in a different message m̂ just by
looking at the value r̂.

This is exactly a DP-then-Encrypt scheme, where we can define a probability per-
mutation π as in Definition (7) with Pr [π(m1) = m2] = αm1,m2 and the original Dijk’s
encryption scheme.

Remark 8. As in the Remark (6), changing S will change the probability permutation π
since the probability α will change. For this reason, the random subset S, the probability
permutation π, the probability α and the new parameter ξ are dependent one from the
others.

Proposition 5. Given an αm,m-correct public key modified Dijk et al. ’s encryption
scheme with fixed parameters (ρ, ρ′, η, γ, τ, ξ).
Any adversary A with non-negligible advantage ϵ on the αm,m-correct encryption scheme
can be converted into an adversary B with non-negligible advantage ϵ on the original
Dijk et al.’s encryption scheme with parameter (ρ, ρ′, η, γ, τ).

Proof. Follows from Lemma (1).

6. CONCLUSIONS & FUTURE WORK 41

5.1 Implementation and Statistics
In order to empirically study the dependency between the parameters ξ, α and ϵ, we
implemented the modified Dijk et al. ’s encryption scheme of Section 5 in Sage. Con-
sidering λ = 10 as a general security parameter, we started from the scheme with
parameters:

ρ = λ ρ′ = 2 · λ η = λ2 γ = λ5 τ = λ ξ = 0

and then we consider the k-th variation where we add a factor of ξ̃k = k·p
10

to the noise
interval 2ρ

′
+ ξ̃k. In Figure 17, we have the measured value for α and ϵ with respect

to k. For every k ∈ [1, 30], we tested λ different choice of S, we executed N = 100
experiments and retrieved an empirical value for α. In order to obtain the ϵ, we just
took the ϵ = sup

{
α

1−α ,
1−α
α

}
. We tested different random keys S and the empirical

difference between the plots is barely visible, but it can easily be described as a “really
small translation of the plot to the left or right”. In the chosen key used for the test,
if we want to have a α = 0.8 correctness probability, we have to use ξ̃4 = 2·p

5
and the

scheme will have ϵ = 1.38 -DP.

Figure 17: Empirical measurements of α and ϵ with respect to ξ̃k.

6 Conclusions & Future Work

This paper bridges concepts in cryptography and differential privacy and we propose the
first differentially private encryption scheme. More precisely, we show how to construct-
ively combine differential privacy with an encryption framework in a single scheme,
contained in the Encrypt+DP class, and vice versa. This construction is not limited
to homomorphic encryption schemes and can be used in order to define an encryption
scheme that can guarantee both privacy and confidentiality.

So far we have only examined this link in an abstract way. An open question is
the trade-off between αm1,m2 -correctness and ϵ(αm1,m2)-DP for specific homomorphic
operations, with a particular attention to the bootstrap procedure. This might lead
to interesting practical applications, such as faster, α-correct homomorphic encryption
schemes with differential privacy guarantees.

HIKE: Walking the Privacy Trail

Elena Pagnin, Carlo Brunetta, and Pablo Picazo-Sanchez

Chalmers University of Technology, Gothenburg, Sweden

17th International Conference on Cryptology And Network Security
(CANS), 2018 Naples (Italy)

Paper B - HIKE: Walking the Privacy Trail 45

Abstract: We consider the problem of privacy-preserving processing of outsourced
data in the context of user-customised services. Clients store their data on a server.
In order to provide user-dependent services, service providers may ask the server to
compute functions on the users’ data. We propose a new solution to this problem that
guarantees data privacy (i.e. an honest-but-curious server cannot access plaintexts), as
well as that service providers can correctly decrypt only –functions on– the data the
user gave them access to (i.e. service providers learn nothing more than the result of
user-selected computations).

Our solution has as base point a new secure labelled homomorphic encryption scheme
(LEEG). LEEG supports additional algorithms (FEET) that enhance the scheme’s func-
tionalities with extra privacy-oriented features. Equipped with LEEG and FEET, we
define HIKE: a lightweight protocol for private and secure storage, computation and
disclosure of users’ data. Finally, we implement HIKE and benchmark its performances
demonstrating its succinctness and efficiency.

Keywords: Homomorphic encryption, Privacy-preserving computation, Se-
curity protocol, GDPR

46 Paper B - HIKE: Walking the Privacy Trail

1 Introduction

We are living in the digital era, where people like to store their personal data in the
cloud and get access to it any-time and anywhere. On the other hand, database main-
tainers and service providers develop an increasing interest for processing and extracting
statistics from users’s data. The usual setting is depicted in Figure 18: users (or cli-
ents) agree to share their personal data with some service providers which, in exchange,
returns customised services and improved user-dependent performances. Typical ap-
plication scenarios are: e-Health environments (e.g. keeping a blood pressure database
that doctors can access to retrieve data) or smart trackers (e.g. activity bands that keep
track of users’ performance and achieved goals).

User query
data

answer

feedback

Database

Service

Providers

Figure 18: The setting we consider: users send data to a database and enjoy some service.
Example 1 (e-Health): doctors can query for the average blood pressure in the last hour and
alert the user in case of need. Example 2 (sport): the service provider can query for the distance
run until ‘now’ and feedback when the daily goal is achieved.

In recent years, the cryptographic community has proposed new techniques for com-
puting on outsourced data including Fully Homomorphic Encryption [Gen09], Verifiable
Computation [GGP10] or Multi-Key Homomorphic Signatures [FMNP16]. Beyond the
obvious benefits, user-customised services may have undesirable drawbacks. In particu-
lar, service providers can collect data from thousands of clients, identify trends, profile
users, and potentially sell their knowledge to third parties without the clients’ consent
or awareness.

In this paper, we define a model for user-customised services that addresses new
privacy challenges inspired to the guidelines provided in the European General Data
Protection Regulation (GDPR) [Cou16]. This regulation sets clear boundaries on how
data should be collected, handled and processed by protecting clients from possible
miss-usages of their data by malicious service providers.

In particular, we give one of the first attempts4 to rigorously formalise in crypto-
graphic terms three of the main guidelines in the GDPR [Cou16], namely: (i) the client’s
data is never stored in plaintext on public databases (art. 32); (ii) the client decides
who can read her data (art. 15); (iii) the client has the right to be forgotten, i.e. to
request deletion of her data (art. 17).

Our Contributions. Our main contribution is the proposal and efficient instantiation
of HIKE, a new cryptographic protocol that solves the problem of providing client-
customised services. In details, our contributions are as follows:

(a) We present LEEG, a new labelled encryption scheme based on the elliptic-curve
ElGamal scheme which supports homomorphic computation of multi-variate linear
polynomials.

4The only academic works we found related to the GDPR are [Con18, PJ17], where the focus is
on technical and implementation requirements. We could not find any work attempting to formalise
and analyse the GDPR requirements in cryptographic terms.

Introduction 47

(b) We define a set of additional algorithms that increase the versatility of LEEG,
including an algorithm to cryptographically destroy encrypted data and a new
procedure through which a chosen third party gets decryption rights for specific
computations on encrypted data. We call this set of algorithms FEET as they
extend the LEEG scheme.

(c) We then use LEEG and FEET in our HIKE protocol. HIKE is a novel lightweight
protocol designed for application scenarios that involve users, servers, and service-
providers. What makes this scenario different is that users’ data need to be both
privately and securely stored while allowing service providers to perform simple
statistics on specific portions of users’ data.

(d) We prove that HIKE is secure with respect to our security model that includes
notions that address three articles of the GDPR law, namely (i) user’s data is
never stored as plaintext in the server; (ii) the user has the power to decide who
can read its data; (iii) the user can always ask the server to cryptographically
destroy its data.

(e) We implement the HIKE protocol and empirically test its succinctness and effi-
ciency. We provide a complete benchmark for all the algorithms involved. Our
implementation is freely available at https://github.com/Pica4x6/HIKE.

Overview of our Technique. Our starting point is the ElGamal encryption scheme
on elliptic curves [Kob87, HPS14]. We progressively change this scheme by introducing
three ideas: (a) replacing the sampling of randomness in a ciphertext by using labels
and Pseudo Random Function (PRF); (b) modifying the labels to include the public
key of the scheme, and; (c) exploiting the structure of the new ciphertexts to define
algorithms for special user-privacy oriented features.

In more detail, but still quite abstractly, the three ideas work as follows. A label
is a unique identifier for a specific message and it contains the sender’s public key, a
random curve point and a tag that identifies the message. Idea (i) is to change how
the randomness is generated during the encryption procedure. We replace the random
sampling of ElGamal encryption with the evaluation of a secure pseudo-random function
PRFk on the label. For this change to work correctly, we also need to add the PRF key
k to the user’s secret key. The major implications of this change are: 1) we can get
rid of the random component of classical ElGamal ciphertexts (thus achieving better
succinctness), and 2) the new scheme has secret-key encryption.

Idea (ii) exploits the special structure of the labels and views the “random curve
point” as the public key of the designated-receiver (e.g. the service provider). By doing
so, we can algebraically manipulate ciphertexts in meaningful ways and also allow data
decryption for both the encryptor and the designated-receiver (the latter upon receiving
a special data-dependent token).

The last idea (iii) is to combine (i) and (ii) and design a protocol which addresses:
data-secrecy (similar notion to semantic security); token-secrecy (data owner have full
control on who can decrypt their data), and; forgettability (data owners can ask for their
data to be destroyed).

Related Work. Rivest et al. [RAD78] introduced the concept of Homomorphic En-
cryption (HE) schemes as a set of algorithms that can be used to encrypt data, perform
some computations on the ciphertexts, and directly decrypt the result of the computa-
tion.

For over 30 years, all secure proposals of HE schemes were only partially homo-
morphic, i.e. they supported either additions or multiplications of ciphertexts [Pai99,

https://github.com/Pica4x6/HIKE

48 Paper B - HIKE: Walking the Privacy Trail

ElG85]. The breakthrough result was due to Gentry [Gen09] and started an avalanche of
Fully Homomorphic Encryption (FHE) schemes [SV10, BV14, SV10, CRRV17]. How-
ever, most FHE schemes have major drawbacks due to key sizes and (or) efficiency.
Albeit HE supports less expressive computations than FHE, as long as we are interested
in simple statistics (e.g. average, additions, least square fit of functions) on encrypted
data, HE has better performances than FHE.

Barbosa et al. [BCF17] introduced the notion of Labelled Homomorphic Encryption
(LabHE) which combines HE with labels. This is an elegant approach to address the
problem of privacy-preserving processing of outsourced data. In this paper, we follow
their definitional framework but we avoid the presence of a fully trusted party that
executes the initial setup and holds a master secret key. Albeit being less expressive
than Barbosa et al.’s scheme, our protocol achieves full succinctness without relaying
on any trusted party.

A concurrent and independent work by Fischer et al. [FFKB17] proposes a lin-
early homomorphic construction also based on ElGamal encryption scheme. The aim
of [FFKB17] is to provide both information flow security and authentication while our
scheme has a privacy-oriented cryptographic approach —since we do not consider au-
thentication, and it achieves full ciphertext succinctness.

2 Preliminaries

Notation. For any finite set S, we denote by x←$ S the uniformly random sampling of
elements from S, and by |S| as the size of the set. We denote by [n] the set {1, ... , n}, by
[0..q] the set {0, ... , q}, and by {0, 1}∗ the space of binary-strings of arbitrary length. For
any linear function f on n variables we describe f as f(x1, ... , xn) = a0+

∑
i∈[n] aixi, for

opportune values ai ∈ [0..q−1]. We denote by λ the security parameter of cryptographic
schemes and functions, and by ε a negligible function in λ, i.e. ε(λ) = O(λ−c) for every
constant c > 0. We refer to computational feasibility (resp. infeasibility) of a problem
if all known algorithm to solve the problem run in polynomial (resp. exponential) time.

Elliptic Curves. For prime p, let E be an elliptic curve over Fp and P be a generator
point for the group G derived by E . Let q be the order of G, i.e. G =< P >= {O, P, 2 ·
P, ... , (q− 1) · P}, where O is the point at infinity (identity element of G). For security
reasons, we require q to be a prime number or a non-smooth (i.e. q is divisible by a
large prime).

Problem 1 (Elliptic Curve Discrete Logarithm Problem [Kob87]). Let p be a prime
number and E be an elliptic curve over Fp. Let G be the subgroup generated by a point
P ∈ E such that G =< P > and |G| = q is prime or a non-smooth number. Given
Q ∈ G, the Discrete Logarithm (DLog) requires to find the value m ∈ [0, ... , q − 1] such
that m · P = Q.

Pollard’s Rho [Pol78] is a well-known algorithm for solving the DLog problem. Its
running time, however, is exponential in the group size, i.e.O(

√
|G|) = O(2

q
2).

Assumption 1. Given G, P and Q as in Problem 1, it is computationally infeasible
to find a solution to the DLog.

Problem 2 (Interval Discrete Logarithm Problem [Pol00]). Let E, Fp, G, P and Q
be as in Problem 1. The Interval Discrete Logarithm Problem (IDLP) requires to find
the value m ∈ [0, ... , q − 1] such that m · P = Q knowing that m ∈ [a, ... , b] for a, b ∈
[0, ... , q − 1].

Preliminaries 49

Pollard’s kangaroo algorithm [Pol00] finds an existing solution to the IDLP problem in
a given interval [a, ... , b] in time O(2

∆
2) where ∆ = ⌈log2(b− a)⌉ is the number of bits

in the binary representation of the interval length [MT09].

Assumption 2. Solving the IDLP is computationally feasible for |[a..b]| < 222, while
it is infeasible for larger intervals |[a..b]| > 2160.

Pseudo Random Functions (PRF) [KL08]. A PRF is a collection of keyed func-
tions from a (possibly infinite) set A to a finite set B. Formally, let F be the set of all
functions from A to B and K be a (finite) set of keys, a PRF family is a set of functions
{PRFk : A→ B | k ∈ K} satisfying the following properties:

(a) For any a ∈ A and k ∈ K, the function PRFk(a) is efficiently computable.

(b) No Probabilistic Polynomial-Time (PPT) algorithm can distinguish the function
PRFk (for k←$ K) from a function f ←$ F .

In this paper, we regard HMAC-SHA256 as secure pseudo random function family
for functions PRFk : {0, 1}∗ → Zq with k ∈ K.

2.1 Labelled Homomorphic Encryption
The notion of labelled homomorphic encryption was introduced by Barbosa et al.to
improve the efficiency of HE schemes [BCF17]. The main idea is to combine homo-
morphic encryption [Gen09] with labelled programs [GW13] to be able to compute on
selected outsourced ciphertexts. A labelled program P is a tuple (f, (ℓ1, ... , ℓn)), such
that f : Xn → X is a function of n variables and ℓi is a label for the i-th input of f .
Labelled programs can be used to identify users’ input to computations by imposing
ℓ = (id, τ) for some user identifier id and tag τ [FMNP16]. We denote by Iℓ = (f, ℓ)
the identity labelled program on the label ℓ, i.e. fℓ(x) = x.

Formally, a labelled homomorphic encryption scheme LabHE = (KGen,Enc,Eval,Dec)
is defined by the following algorithms:

KGen(1λ): on input the security parameter, it outputs a secret key sk and a (public)
evaluation key ek that includes a description of a message spaceM, a label space
L, and a class of admissible functions F .

Enc(sk, ℓ,m): on input sk, a label ℓ, and a message m, it outputs a ciphertext ct.

Eval(ek, f, ct1, ... , ctn): on input ek, a function f : Mn → M in a set of admissible
functions F , and n ciphertexts. It returns a ciphertext ct.

Dec(sk,P, ct): on input sk, a labelled program P = (f, ℓ1, ... , ℓn) and a ciphertext ct,
it outputs a message m.

Moreover, LabHE satisfies the properties of correctness, succinctness, (semantic)
security and context hiding defined in as follows.

Definition 10 (Correctness [BCF17]). A LabHE scheme is said to be correct for a
family of functions F if, for all keys (ek, sk) ← KGen(1λ), all f ∈ F , any selection
of labels ℓ1, ... , ℓn ∈ L, and messages m1, ... ,mn ∈ M, with corresponding ciphertexts
cti ← Enc(sk, ℓi,mi), i ∈ [n], and P = (f, (ℓ1, ... , ℓn)), it holds that:

Prob [Dec (sk,P,Eval(ek, f, ct1, ... , ctn)) = f(m1, ... ,mn)] ≥ 1− ε.

Definition 11 (Succinctness [BCF17]). A LabHE scheme is said to be succinct if there
exists a fixed polynomial poly(·) such that every honestly generated ciphertext (output
by Enc or Eval) has bit-size size poly(λ).

50 Paper B - HIKE: Walking the Privacy Trail

The security notion for LabHE schemes is inspired to the standard semantic security
experiment proposed by Goldwasser and Micali [GM82].

Definition 12 (Context Hiding [BCF17]). A LabHE scheme is context-hiding if there
exists a PPT algorithm Sim such that, for any (ek, sk) ← KGen(1λ), f ∈ F , any tuple
of labels ℓ1, ... , ℓn ∈ L and messages m1, ...mn ∈ M with corresponding ciphertexts
ct1 ← Enc(sk, ℓi,mi), if m = f(m1, ... ,mn) and P = (f, ℓ1, ... , ℓn) then:

1

2
·
∑
ct

∣∣∣Prob [Eval(ek, f, ct1, ... , ctn) = ct]− Prob
[
Sim(1λ, sk,P,m) = ct

]∣∣∣ < ε(λ)

Definition 13 (Semantic security for LabHE [BCF17]). A LabHE scheme is semantic-
ally secure if for any PPT algorithm A taking part to the semantic security experiment
Expsem.sec

LabHE,A(λ) in Figure 19, it holds that:

Advsem.secLabHE,A(λ) = Pr
[
Expsem.sec

LabHE,A(λ) = 1
]
− 1

2
< ε.

Expsem.sec
LabHE,A(λ):

b←$ {0, 1}, Llab = ∅
(ek, sk)← KGen(1λ)
(ℓ∗,m0,m1)← AOEncsk(ek)
if ℓ∗ ∈ Llab

ct = error
else

ct← Enc(sk, ℓ∗,mb)
Llab ← Llab ∪ ℓ∗

b′ ← AOEncsk(ct)

Output 1 if b = b′, and 0 otherwise.

OEncsk(ℓ,m) :
if ℓ ∈ Llab

return error
else Llab ← Llab ∪ ℓ

return ct← Enc(sk, ℓ,m).

Figure 19: The semantic-security experiment for LabHE schemes, and the OEnc oracle.

3 Labelled Elliptic-curve ElGamal (LEEG).

In its standard construction, the ElGamal encryption scheme [ElG85] is defined on finite
multiplicative groups and is only multiplicative-homomorphic. It is possible to obtain
an additive-homomorphic version of ElGamal by using groups defined over an elliptic
curve [Kob87, HPS14] and specific message encoding maps, discussed later in Section 7.
Essentially, in the elliptic curve setting, exponentiations are replaced by multiplications
and multiplications by additions. Security reduces to the hardness of computing the
discrete logarithm on elliptic curves. For further details on ElGamal for elliptic curve
groups see [HPS14].

In this section, we define the first labelled and symmetric-key version of the additive-
homomorphic ElGamal scheme that we refer to as LEEG (Labelled Elliptic-curve El-
Gamal). To ease the adoption of LEEG in our GDPR-oriented protocol HIKE in Section
5.1, we make a small adaptation to Barbosa et al.’s framework for LabHE. We introduce
a Setup algorithm that outputs some global public parameters pp, and make the KGen
algorithm run on pp. This change is only syntactic if KGen is run once and brings with
straightforward modifications to the definitions.

Labelled Elliptic-curve ElGamal (LEEG). 51

Definition 14 (LEEG). The LEEG scheme is defined by the following five PPT al-
gorithms:

Setup(1λ): on input the security parameter , the setup algorithm outputs pp that in-
clude: a λ-bit-size prime p, an elliptic curve E over Fp with a (prime) order-q
group G ⊆ E, a generator P of the group G, a set of admissible functions F
(namely linear functions), a set of messagesM∈ [m], a set of message identifiers
T = {0, 1}t, a set of labels L = G× G× T , and a keyed-pseudo-random function
family PRF from {0, 1}∗ to [0..q−1]. The pp are input to all subsequent algorithms
even if not stated explicitly.

KGen(pp): on input the public parameters the key generation algorithm selects a ran-
dom element sk ←$ [q− 1] and a random PRF key k←$ K. It outputs the secret key
sk = (sk, k).5

Enc(sk, ℓ, m): on input a secret key sk = (sk, k), a label ℓ = (sk · P,Q, τ) with Q ∈ G
and message m ∈M the encryption algorithm returns the ciphertext:

ct = m · P + PRFk(ℓ) · sk ·Q ∈ G (6)

In case the input label has as first entry a value different from sk ·P the algorithm
returns error.

Eval(f, ct1, ... , ctn): on input a linear function f(x1, ... , xn) = a0 +
∑
i∈[n] aixi and n

ciphertexts cti, the evaluation algorithm returns the ciphertext:

ct = a0 · P +
∑
i∈[n]

ai · cti ∈ G (7)

Dec(sk, P, ct): on input a secret key sk = (sk, k), a labelled program P = (f, ℓ1, ... , ℓn)
for a linear function f with labels of the form ℓi = (sk ·P,Qi, τi), and a ciphertext
ct, the decryption algorithm computes:

T = ct− sk ·
(∑
i∈[n]

ai · PRFk(ℓi) ·Qi
)
∈ G (8)

and returns m = logP (T).

We note that LEEG is a fully dynamic scheme, indeed ciphertexts output by Eval can
be used as input to new computations (as long as the new computation includes the
initial labelled program).

Succinctness of LEEG. The succinctness of the LEEG scheme is immediate given
that ciphertexts (output by Enc or Eval) are always one single group element in G ⊆ E .
Further details regarding the actual bit-size for our implementation can be found in
Section 7.

Correctness of LEEG. The correctness of LEEG is a straightforward computation.

Context-hiding of LEEG. The context-hiding property of LEEG is straightforward
since given sk,P and m = f(ct1, ... , ctn) the simulator is able to reconstruct exactly the
same ciphertext output by Eval(f, ct1, ... , ctn) as

Sim(sk,P,m) := f(m1, ... ,mn) · P + sk
∑
i∈[n]

aiPRFk(ℓi) ·Qi

5In the original definition of Labelled Homomorphic Encryption [BCF17], the KGen algorithm
additionally outputs a public evaluation key. Since in our case this key is empty, we decided to skip
it and have more succinct algorithm descriptions.

52 Paper B - HIKE: Walking the Privacy Trail

Security of LEEG. We want to prove that our LEEG scheme is semantically secure
according to Barbosa et al.’s definition [BCF17] (Definition 13).

Proof. Let Qprf(λ) be a bound on the total number of encryption queries performed by
A during the security experiment. Let Game 0 be the semantic security experiment
in Definition 13 where, for consistency with our definition of LEEG, the challenger
runs Setup(1λ) → pp to obtain the public parameters of the scheme, then it runs
KGen(pp) → sk = (sk, k) and computes pk = sk · P . In addition, C ignores any query
with label ℓ = (Q′, Q, τ) where Q′ ̸= pk.

Let Game 1 be the same as Game 0 except that the challenger replaces every PRFk(·)
instance with the evaluation of a truly random function rand : G× G× T → [0..q − 1].
It is quite easy to see that the difference between Game 1 and Game 0 is solely in
the generation of the values r. Therefore the probability of A winning is the same in
the two games, a part from a Qprf(λ) factor that comes from distinguishing the PRF
instance from a truly random function. Thus

|Prob [G0(A)]− Prob [G1(A)] | ≤ Qprf(λ) · AdvPRFA (λ).

At this point, we observe that for any given ciphertext ct and label-message pair
(ℓ,m) there is exactly one value r ∈ [0..q − 1] for which ct is an encryption of m for
label ℓ. In particular, for every triple (ct, ℓ,m) it holds that

Prob [Enc(sk, ℓ,m) = ct] =
|r ∈ [0..q − 1] :M + r · sk ·Q = ct|

|[0..q − 1]| =
1

q
,

where the probability is taken over all the possible values r ←$ [0..q−1]. Since the above
probability holds also for the challenge ciphertext ct∗ we have that

Prob [Enc(sk, ℓ0,m0) = ct∗] = Prob [Enc(sk, ℓ1,m1) = ct∗]

(semantic security) and implies Prob [G1(A)] = 1
2
. Therefore:

Prob [G0(A)] ≤ |Prob [G0(A)]− Prob [G1(A)] |+ Prob [G1(A)]

≤ Qprf(λ) · AdvPRFA (λ) +
1

2

which proves the semantic security of LEEG, given that Qprf(λ) is polynomial and
AdvAPRF(λ) is negligible (by our security assumption on the PRF family).

4 FEET: Feature Extensions to the labelled homomorphic El-
gamal encrypTion scheme

In this section we define FEET a set of additional algorithms that increase the versatility
and use cases of LEEG. The new algorithms build on the following observation. Given a
label ℓ = (Q1, Q2, ·) we can interpret its first component Q1 as the public key of the user
who is performing the encryption (that we call this data-owner), and Q2 as the public
key of another user (that we call intended receiver). By doing so, we can give a sensible
meaning to the procedures and manipulate ciphertexts in such a way that decryption
works correctly only for data encryptor statde in the first component of the label, and
the designated-receiver identified by the second component of the label. Assuming the
existence of a Public Key Infrastructure (PKI), FEET exploits the algebraic structure
of LEEG ciphertexts to perform two actions:

- Cryptographically ‘delete’ data owner’s ciphertexts from a database by making
them un-decryptable, i.e. even the original data-owner would retrieve a random
message by decrypting a destroyed ciphertext.

FEET: Feature Extensions to the labelled homomorphic El-gamal encrypTion scheme 53

- Allow the data-owner to generate a special piece of information (called token) that
enables the intended receiver to decrypt the output of a specific labelled program
run on the encryptor’s data.

Definition 15 (FEET: set of additional algorithms for LEEG). Let LEEG = (Setup,
KGen,Enc,Dec,Eval) be the labelled homomorphic encryption scheme of Definition 14,
where the KGen algorithm is run multiple times and associates identities (identifiers id)
to the keys it generates. We define:

Destroy(ct): on input a ciphertext ct, the destroy-cihpertext algorithm picks a random
r ←$ [0..q − 1] and outputs the destroyed ciphertext ct′ = ct+ r · P .

PublicKey(sk): on input the secret key sk = (sk, k) output the corresponding public key
pk = sk · P .

TokenGen(sk,P): on input a secret key sk = (sk, k) and a labelled program P = (f, ℓ1, ... , ℓn)
the token generation algorithm checks if the labels are of the form ℓi = (sk ·P,Q, τi)
— for a point Q ∈ G and some τi ∈ T , i ∈ [n]. If the condition is not satisfied,
the algorithm returns error; otherwise, it parses f(x1, ... , xn) = a0 +

∑
i∈[n] aixi

and outputs :
tok = sk ·

(∑
i∈[n]

ai · PRFk(ℓi)
)
· P (9)

TokenDec(sk, ct, tok): on input a secret key sk = (sk, k), a ciphertext ct and a token tok,
the decryption-with-token algorithm outputs m′ = logP (ct− sk · tok).

Information theoretic security of Destroy. We prove this property by showing
that for any given message m and ciphertext ct′, ct′ is a possible ‘destruction’ of ct =
Enc(sk, ℓ,m) for any label. More formally, for any m ∈M, ℓ = (sk ·P, pk, τ) and ct′ ∈ G
it holds that:

Prob
[
Destroy(Enc(sk, ℓ,m)) = ct′

]
=
|{r : ct′ = (m + r′) · P + sk · r · pk}|

|G| =
1

|G|

where the probability is taken over all possible random choices in the Destroy algorithm
(r′ ∈ [0..q − 1]), and r = PRFk(ℓ). In particular, for any pair of label-message couples
(ℓ0,m0), (ℓ1,m1) it holds that:

Prob
[
Destroy(Enc(skid0 , ℓ0,m0)) = ct′

]
= Prob

[
Destroy(Enc(skid1 , ℓ1,m1)) = ct′

]
.

Therefore given a ct′ output by Destroy this could be generated by the ciphertext of
any message m ∈M.

Correctness of TokenDec. In order to prove the correctness of the decryption-with-
token algorithm we need to show that

TokenDec(sk2,Eval(f, ct1, ... , ctn),TokenGen(sk1,P)) = f(m1, ... ,mn)

where cti = Enc(sk1, ℓi,mi), ℓi = (pk1, pk2, τi) for some τi ∈ T , and P = (f, ℓ1, ... , ℓn).
This is a straightforward computation and follows from Equation (7), Equation (9)
and the fact that pki = ski · P .

Remark 9 (Composability of TokenGen). It is possible to combine two (or more) de-
cryption tokens tok1, tok2 generated for distinct labelled programs P1,P2, to obtain a
joint decryption token tok that enables the intended decryptor with public key pk2 = Q
(common to all the labels involved) to correctly decrypt in one-shot the ciphertext for
any labelled program P such that f = b1f1 + b2f2, for any b1, b2 ∈ [0..q − 1].

54 Paper B - HIKE: Walking the Privacy Trail

Consider two labelled programs P1 = (f1, ℓ1, ... , ℓn) and P2 = (f2, ℓ
′
1, ... , ℓ

′
n′). For

consistency, token composability requires that all the labels involved in P1 and P2 are of
the form ℓ = (sk ·P,Q, τ) for some opportune value of τ . Without loss of generality, we
can set f1 = a0 +

∑
i∈[n] aixi and f2 = a′0 +

∑
j∈[n′] a

′
jxψ(j) for opportune coefficients

ai, a
′
j ∈ M, and an index-mapping function ψ : N → N used to model the fact that the

functions may be defined on a different set of variables. Let I ⊆ N be the set of indexes
of common variables, formally:

I = {i ∈ [n] such that ψ(j) = i for some j ∈ [n′]}. (10)

The composed labelled program P = b1P1 + b2P2 is defined as P = (f, ℓ̃1, ... , ℓ̃ñ) with
f = b1f1 + b2f2, f(x1, ... , xñ) = (b1a0 + b2a

′
0)+

∑
i∈I(b1ai+ b2a

′
i)xi+

∑
i∈[n]\I b1aixi+∑

j∈[n′]\ψ(I) b2a
′
jxj for any b1, b2 ∈M. We show that the combined token tok = b1tok1+

b2tok2 is a valid decryption token for the composed labelled program P, actually tok =
TokenGen(sk,P). In details:

tok = b1tok1 + b2tok2

= sk
(∑
i∈[n]

b1airi +
∑
j∈[n′]

b2a
′
jr
′
ψ(j)

)
· P

= sk
(∑
i∈I

(b1ai + b2a
′
i)ri +

∑
i∈[n]\I

b1airi +
∑

j∈[n′]\ψ(I)

b2a
′
jr
′
j

)
· P

= TokenGen(sk,P)

The set I in the second last equality is the one defined in (10), that is ℓi = ℓ′i=ψ(j) for all
i ∈ I and therefore ri = r′i = PRFk(ℓi). By the correctness of the TokenGen-TokenDec al-
gorithms, we derive that tok is a valid decryption token for sk2, ct = Eval(f, ct1, ... , ctñ).
It is straightforward to generalise this reasoning to multiple labelled programs P1, ...Pt
as long as all the labels coincide on the first two entries.

5 The HIKE protocol

In this section, we introduce HIKE: a protocol that employs our LEEG scheme and its
extra features FEET to achieve advanced properties relevant to real world applications.

In what follows, we present a use case for HIKE and defer the formal description to
the Section 5.1. We consider a scenario with three types of actors: data-owners (called
clients and denoted as U), a cloud server (denoted as S) that controls the database ∆
where the clients’ records are stored, and service providers (denoted as T). The work-
flow of the interactions between these actors is depicted in Figure 20. As a use case,
consider clients with smart-watches used for tracking their sport performances. With
HIKE clients can safely upload their data on the cloud, cancel previously uploaded
records, retrieve their data (or functions of thereof) at any time. Moreover, clients
can allow their personal trainer app to access specific aggregations of data to provide
personalised performance feedback.

5.1 A formal description
Definition 16 (The HIKE protocol). Let LEEG = (Setup,KGen,Enc,Dec,Eval) be the
labelled homomorphic encryption scheme in Definition 14 enhanced with the algorithms
FEET = (TokenGen,TokenDec,Destroy) described in Definition 15. We assume a PKI
that, at every run of the KGen algorithm, associates identities (identifiers id) to the
freshly generated keys. The HIKE protocols is defined by the following procedures:

The HIKE protocol 55

Client Server

Service Providers

Dec(skC,P, ct) → m

Enc(skC, ℓ,m) → ct UploadData(∆, ℓ, ct) → ∆
upload

forget

retrieve

token

retrieve

Destroy(skC,P) → tok

Eval(f, ℓ1, ..., ℓn) → ct

TokenDec(skP, ct, tok) → mTokenGen(skC,P) → tok

Figure 20: Clients upload their encrypted data to the server (via an upload request). At
any point in time, clients have the right to destroy their records in the database (via a
forget request). In order to obtain aggregate information on the stored data, clients and
service providers can ask the server to compute certain functions on the outsourced data
and return the (encrypted) result (via a retrieve request). Finally, clients are always able
to decrypt their own retrieved data, while service providers cannot decrypt directly. In
order to decrypt the result of a computation P = (f, ℓ1, ... , ℓn) on the client’s data, the
service provider needs to ask the client to generate a computation-specific decryption
token (via a token request) that enables the designated service provider to decrypt.

Initialise(1λ): on input the security parameter λ, the initialisation procedure runs
Setup(1λ)→ pp and returns the public parameters. Implicitly, it also generates a
database ∆ and a public key infrastructure.

SignUp(id): on input a user identifier id the sign-up procedure returns skid ← KGen(pp)
and updates the public ledger (PKI) with (id, pkid) where pkid = PublicKey(skid).
For correctness, this procedure outputs ⊥ if user id was already present in the
system.

Encrypt(sk, ℓ,m): on input a secret key sk, a label ℓ and a message m the encryption
procedure returns the ciphertext ct = Enc(sk, ℓ,m).

UploadData(∆, ℓ, ct): on input a database ∆, a label ℓ and a ciphertext ct the upload
data procedure performs ∆ = ∆ ∪ {(ℓ, ct)}.

Forget(∆, ℓ): on input a database ∆ and a label ℓ the forget-ciphertext procedure re-
trieves the record (ℓ, ct) from ∆ and replaces it with (ℓ, ct′) where ct′ ← Destroy(ct),
i.e.it outputs ∆ = ∆ \ {(ℓ, ct)} ∪ {(ℓ, ct′)}.

Compute(∆,P): on input a database ∆ and a labelled program P = (f, ℓ1, ... , ℓn) the
retrieve-data (or aggregate data) procedure collects the ciphertexts cti correspond-
ing to labels ℓi present in ∆ and returns ct = Eval(pp, f, ct1, ... , ctn).

Decrypt(sk,P, ct): on input a secret key sk, a labelled program P, and a ciphertext ct
the decryption procedure outputs m = Dec(sk,P, ct).

AllowAccess(sk,P): on input a user’s secret key sk and a labeled program, the allow-
access procedure returns tok = TokenGen(sk,P).

AccessDec(sk, ct, tok) on input a user’s secret key sk, a ciphertext ct and a decryption
token tok, the allowed-decryption procedure returns the output of TokenDec(sk, ct, tok) =
m.

56 Paper B - HIKE: Walking the Privacy Trail

5.2 Evaluation correctness of HIKE

The evaluation correctness of our HIKE protocol essentially reduces to the correct-
ness of the underlying LEEG scheme (Definition 14) and FEET (Definition 15). Form-
ally, the HIKE is correct if for any pp ← Initialise(1λ), for any combination of keys
(pkU , skU), (pkT , skT) generated by the SignUp procedure, for any labelled program
P = (f, ℓ1, ... , ℓn) with labels for the form ℓ = (skU · P,Q = pkT , ·), for any set of
messages mi ∈ M with ciphertexts cti = Encrypt(sk, ℓi,mi), and for m = f(m1, ... ,mn)
it holds that:

(1) Decrypt(skU ,P,Compute(P)) = m.

(2) AccessDec (skT ,Compute(P),AllowAccess(skU ,P)) = m.

Condition (1) is equivalent to the evaluation correctness of the LEEG scheme given that
the Compute procedure returns the output of LEEG’s Eval algorithm and the Decrypt
procedure runs LEEG’s Dec algorithm.

Condition (2) is equivalent to the correctness of LEEG’s additional algorithms given
that AllowAccess returns the output of TokenGen, Compute returns the output of LEEG’s
Eval algorithm and AccessDec runs the TokenDec algorithm.

5.3 Interactions between the procedures of HIKE

We consider three categories of users taking part to the HIKE protocol:

Clients U : (or data owners), these users can run the procedures: SignUp, Encrypt,
Decrypt and AllowAccess.

Server S: (or database maintainer), this user can run the procedures: UploadData,
Compute and Forget.

Service providers T : (or third-party applications), these users can run the proced-
ures: SignUp and AccessDec.

To simulate a real-world scenario, we allow users registered in the system to interact
with each other. We model interaction via requests sent from one user to another and
that there exists an authentication system to ensure this. Moreover, we assume that
the target user reacts to the received request as follows:

upload: upload data requests can be performed by clients only and are directed to the
server. Upon receiving an upload(ℓ, ct) request by a client U , the server checks if
the submitted record is a new one , i.e. if (ℓ, ·) /∈ ∆. In this is the case, S runs
UploadData(∆, ℓ, ct) and returns done to U , otherwise S returns error.

forget: forget-ciphertext requests can be performed by clients only and are directed to
the server. Upon receiving an forget(ℓ) request by a client U , the server checks
that the label is a legit one for U , i.e. that ℓ = (pkU , ·, ·) and that (ℓ, ·) ∈ ∆. If
both conditions holds, S runs Forget(∆, ℓ) and returns done to U , otherwise it
returns error.

retrieve: retrieve-data requests can be performed by clients or by service providers and
are directed to the server. Upon receiving a retrieve(P) request the server checks
if the labelled program P = (f, ℓ1, ... , ℓn) is well-defined, i.e. if for every i ∈ [n],
(ℓi, ·) ∈ ∆ and ℓi = (pkh, pkk, ·) for some users registered in the systems. If the
conditions hold, S runs Compute(∆,P) = ct and returns ct to whom performed
the query, otherwise it returns error.

6. SECURITY MODEL AND PROOFS FOR HIKE 57

token: access-token requests can be performed by service providers only and are directed
to clients only. Upon receiving a token(P) request, the client has the freedom to de-
cide whether to reply consistently, i.e. running the algorithm AllowAccess(sk,P) =
tok and returning tok to T , or to ignore the query returning error.

6 Security model and proofs for HIKE

Our security model builds on the setting introduced in Section 5.3 and covers three
main goals:

1) data-secrecy, i.e. confidentiality of the clients’ data;

2) token-secrecy, i.e. clients have full control on who can decrypt their data (only
targeted service providers can decrypt, and no one else); and

3) forgettability, i.e. clients can ask for their data to be destroyed.

Interestingly, these security notions cover three of the requirements presented in the
GDPR: the confidentiality of personal data (security of processing, art. 32), the clients’
right of access (and share) data (art. 15), and; the right to ask for erasure of her
personal data (right to be forgotten, art. 17) [Cou16].

Adversarial model We denote malicious users with the user’s category and the
symbol ∗, e.g. T ∗, and make the following assumptions:

- Clients Ui are honest, i.e. they behave according to the interactions described in
Section 5.3.

- The server S is honest but curious, i.e. it behaves according to the interactions
in Section 5.3 but tries to infer information about the clients’ data (passive ad-
versary).6

- Service Providers Tj can be malicious and deviate from the protocol in arbitrary
ways.

We note that since anyone can generate and register keys in the protocol (using the
PKI infrastructure), a malicious server corresponds to a malicious service provider that
has access to an honest server (as the latter would reply to any retrieve request).

6.1 Data secrecy

Our notion of data-secrecy is inspired to the definition of semantic-security for labelled
homomorphic encryption by Barbosa et al. [BCF17] but adapted to our protocol’s set-
ting. Intuitively, we require that the adversary A, who controls a (malicious) server
provider T ∗ and holds a copy of the (encrypted) database ∆, should not be able to
determine the plaintext associated to a database record (ℓ, ct).
We formalise the notion through the data-secrecy experiment in Figure 21.

Notably, A is given access to three oracles: OSignUp to simulate users registering
to the system, OEncrypt to populate the database with adversarial chosen data (i.e.
A chooses the messages encrypted by a client). With abuse of notation we will write
pkid ∈ Lkeys meaning that Lkeys has an element of the form (id, skid, pkid).

6This assumption removes the theoretical need for the definition of forgettability in our security
model. We include it for completeness.

58 Paper B - HIKE: Walking the Privacy Trail

Expdata−secrecy
HIKE,A (λ):

b←$ {0, 1}, Llab = Lkeys = ∅
pp← Initialise(1λ)
(id∗, skid∗ , pkid∗)← A(pp)
Lkeys ← Lkeys ∪ (id∗, ∗, pkid∗)

(ℓ∗,m0,m1)← AOSignUp(·)
OEncrypt(·,·)(pp)

parse ℓ∗ = (pkid, pkid′ , τ)

if ℓ∗ ∈ Llab or pkid = pkid∗ or pkid
and pkid′ /∈ Lkeys then

ct = error
else

ct← Encrypt(skid, ℓ
∗,mb)

Llab ← Llab ∪ {ℓ∗0, ℓ∗1}

b∗ ← AOSignUp(·)
OEncrypt(·,·)(ct)

if b∗ = b return 1, else return 0.

OSignUp(id) :
if (id, ·, ·) ∈ Lkeys

return error
else
(id, skid, pkid)← SignUp(id)
Lkeys ← Lkeys ∪ (id, skid, pkid)

return pkid.

OEncrypt(ℓ,m) :
parse ℓ = (pkid, pkid′ , τ)

if ℓ ∈ Llab or pkid = pkid∗
or (·, ·, pkid) /∈ Lkeys

return error
else
Llab ← Llab ∪ ℓ
ct← Encrypt(skid, ℓ,m)

return ct.

Figure 21: The data-secrecy experiment and the oracles OSignUp and OEncrypt.

Theorem 1. The HIKE protocol achieves data-secrecy, i.e. for any PPT adversary A
taking part to the experiment in Figure 21, it holds that:

Advdata.secHIKE,A(λ) = Pr
[
Expdata.sec

HIKE,A(λ) = 1
]
− 1

2
≤ Qid · Advsem.secLEEG,A(λ),

where Qid is a bound on the total number calls to the sign-up oracle.

Proof. We exhibit a reduction B that uses A to win the semantic-security experiment
for the LEEG scheme. At the beginning the reduction samples id⋆ ∈ ID as its guess for
the identity that A will target during the game. (Note that |ID| = Qid is polynomial in
this game). This step corresponds to B betting that A will choose the client id⋆ in its
challenge labels.

When the semantic-security experiment starts, the reduction B (that is playing as
an adversary) gets ek = (pk⋆ = sk · P, pp) from its challenger C. Then B starts the
data-secrecy experiment (as a challenger) by sending pp to A. The adversary chooses
an identity id∗ and a pair of keys for it. A also sends (id∗, pkid∗) to B. The reduction
registers the (malicious) user id∗ in the system (Lkeys ← Lkeys ∪ (id∗, ·, pkid∗)) and replies
to A’s queries as follows.

sign-up queries: B forwards the queries to the OSignUp.
encryption queries: B forwards the queries to the OEncrypt oracle unless ℓ =

(pk⋆, pk, τ), in which case B updates the list of queried labels Llab ← Llab ∪ ℓ, forwards
(ℓ,m) as an encryption query to C and relays its reply to A.

Let (ℓ∗,m0,m1) be A’s input to the challenge phase. If ℓ∗ ̸= (pk⋆, ·, ·) the reduction
aborts (as A chose to challenge a different client than the one C has created). This
event happens with probability (1− 1

Qid
). Otherwise ℓ∗ = (pk⋆, Q, τ), B updates the list

of queried labels Llab ← Llab ∪ ℓ∗ and sends (ℓ∗,m0,m1) to its challenger. Let ct denote
C’s reply, B sends ct to A.

In the subsequent query phase B behaves as described above. At the end of the
experiment, B outputs the same bit b∗ returned by A for the data-secrecy exper-

Security model and proofs for HIKE 59

iment. Note that since A is given exactly the same challenge as in the semantic-
security experiment, if A has a non-negligible advantage in breaking the data-secrecy
of HIKE then B has the same non-negligible advantage in breaking the semantic se-
curity of LEEG, unless B aborts its simulation. Therefore we can conclude that:
Advsem.secLEEG,B(λ) ≥

(
1
Qid

)
Advdata.secHIKE,A(λ).

6.2 Token secrecy
Our notion of token-secrecy captures the idea that only the service provider T holding
a valid decryption-token for a ciphertext that was created with T as intended recipient
(i.e.with associated label of the form ℓ = (·, pkT , ·)) can decrypt the message correctly.
In other words, the adversary A (as a malicious T ∗) should not be able to decrypt
the result of any computation P∗ for which it did not received decryption-tokens. We
recall that by the token-composability property (Remark 9 in Section 4), given two
decryption-tokens tokP , tokP′ for two labelled programs P and P ′, it is possible to
generate decryption tokens for any linear combination of the programs P and P ′.

Exptoken.sec
HIKE,A (λ):

b←$ {0, 1}, Ltok = Llab = Lkeys = ∅,∆ = ∅
pp← Initialise(1λ)
(id∗, skid∗ , pkid∗)← A(pp)
Lkeys ← Lkeys ∪ (id∗, ∗, pkid∗)

O = {OSignUp(·), OEncrypt′(·, ·),
, ODisclose(·)}

(ℓ∗,m0,m1)← AO(pp)

let ℓ∗ = (pkid, pkid′ , τ)
if ℓ∗ /∈ Llab or ℓ

∗ ∈ Ltok or pkid = pkid∗
or pkid, pkid′ /∈ Lkeys

ct = error
else

ct← Encrypt(skid, ℓ
∗,mb)

Ltok ← Ltok ∪ ℓ∗, Llab ← Llab ∪ ℓ∗

b∗ ← AO(ct)
if b∗ = b return 1, else return 0.

OEncrypt′(ℓ,m) :
parse ℓ = (pkid, pkid′ , τ)
if ℓ ∈ Llab or pkid = pkid∗

or (·, ·, pkid) /∈ Lkeys

return error.
Llab ← Llab ∪ ℓ
ct← Encrypt(skid, ℓ,m)
∆← ∆ ∪ (ℓ, ct)
return ct.

ODisclose(P) :
parse P = (f, ℓ1, ... , ℓn)
with ℓi = (pkid, pkid′ , τi)
if pkid, pkid′ /∈ Lkeys

or pkid = pkid∗
or ℓi ∈ Ltok for all i ∈ [n]

return error.
Ltok ← Ltok ∪ {ℓ1, ... , ℓn}
tok = AllowAccess(skid,P)
return tok.

Figure 22: The token-secrecy experiment and the oracles OEncrypt′ and ODisclose

In the token-secrecy experiment, we make use of the same OSignUp oracle as in the
experiment in Figure 21; an OEncrypt′ oracle which is the same as the OEncrypt in the
experiment in Figure 21 except that every time it would output a ciphertext ct it will
also add the record to the database, i.e. ∆ ← ∆ ∪ (ℓ, ct) where ℓ is the label chosen
by A; and an additional ODisclose oracle, that enables A to get decryption-tokens of
chosen (computations on) records. We allow the adversary to get decryption-tokens for
any computation P as long as this does not contain the challenge labels.
Theorem 2. The HIKE protocol achieves token-security, i.e.for any PPT adversary A
taking part to the experiment in Figure 22, it holds that:

Advtoken.secHIKE,A (λ) = Pr
[
Exptoken.sec

HIKE,A (λ) = 1
]
− 1

2
≤ Qid · Advsem.secLEEG,A(λ).

60 Paper B - HIKE: Walking the Privacy Trail

Proof. We exhibit a reduction B that uses A to win the semantic-security experiment
for the LEEG scheme. The reduction works exactly as the one in the proof of Theorem 1
a part for a couple of exceptions. First, this reduction holds an additional (private) list
Lrand, that is empty at the beginning of the simulation. Second, B behaves differently
(only) in the following cases:

Encryption queries: B forwards the queries to the OEncrypt′ oracle, unless ℓ =
(pk⋆, pk, τ). In case ℓ = (pk⋆, pk, τ), the reduction does not have the secret key for
encryption and token generation. In order to simulate the encryption and be consistent
with future token-generation queries, B checks if (ℓ, r) ∈ Lrand for some value r ∈
[0..q−1]. If so, B uses the existing values r to compute the ciphertext ct = (m·P+r ·pk).
Otherwise, B picks a random value r ←$ [0..q − 1], updates Lrand ← Lrand ∪ (ℓ, r), and
computes ct = (m · P + r · pk). In any case, B updates the list of queried labels
Llab ← Llab ∪ ℓ, and returns ct to A. Note that ct has the same distribution as the
output of Enc(sk⋆, ℓ,m), indeed for any r chosen by the reduction there exists a value
r′ ∈ [0..q−1] such that r = r′ ·sk⋆ mod q and thus ct = m ·P+r ·pk = m ·P+r′ ·sk⋆ ·pk.
The latter series of equalities shows that B’s simulation is still perfect.

Disclose queries: B forwards to theODisclose oracle all the queries P = (f, ℓ1 ... , ℓn)
with f(x1, ... , xn) = a0+

∑
i∈[n] aixi, ℓi = (pk, pk′, τi) and pk ̸= pk⋆. Otherwise, P con-

tains labels of the form ℓi = (pk⋆, pk′, τi). The reduction performs the same checks as
the ODisclose oracle, if any check fails B returns error. In case all conditions are met, B
proceeds by checking if (ℓi, ·) ∈ Lrand for all i ∈ [n], in which case the reduction uses the
randomness stored in Lrand to compute the token tok = (

∑
i∈[n] airi) · pk

⋆. Otherwise,
for all those labels ℓj not present in Lrand, B samples a random element r ←$ [0..q − 1]
and updates the private list Lrand ← Lrand ∪ (ℓj , r). At this point (ℓi, ri) ∈ Lrand for all
the labels in the queried P and B can compute tok = (

∑
i∈[n] airi) · pk

⋆. In either case,
B updates the list of queried token-labels, i.e. Ltok ← Ltok ∪ (ℓ1, ... , ℓn), and returns tok
to A.

Let (ℓ∗,m0,m1) be A’s input to the challenge phase. If ℓ∗ ̸= (pk⋆, ·, ·) the reduction
aborts (A chose to challenge a different client than the one B bet on). This event
happens with probability (1− 1

Qid
).

Otherwise ℓ∗ = (pk⋆, Q, τ), B updates the list of queried labels Llab ← Llab ∪ ℓ∗ and
sends (ℓ∗,m0,m1) to its challenger C for the semantic security game. Let ct denote C’s
reply, B forwards ct to A.

In the subsequent query phase B behaves as described above.
At the end of the experiment, B outputs the same bit b∗ returned by A for the

token.sec experiment. Note that since A is given exactly the same challenge as in
the sem.sec experiment, if A has a non-negligible advantage in winning the token.sec
experiment, then B has the same non-negligible advantage in breaking the semantic-
security of LEEG, unless B aborts its simulation. Therefore we conclude that:

Advsem.secLEEG,B(λ) ≥
(1

Qid

)
· Advtoken.secHIKE,A (λ)

6.3 Forgettability
Our notion of forgettability (forget.sec) captures the idea that after a forget request, the
target ciphertext does no longer decrypt to the original message. More precisely, there
is no way to derive what the original message was from a destroyed ciphertext.

Our forget.sec experiment, in Figure 23, uses the same oracles as the experiment in
Figure 22. Concretely, Experiment 23 is like the token-secrecy experiments (Fig. 22)
until the challenge phase. In this phase the forget.sec adversary challenges C with one

7. IMPLEMENTATION DETAILS AND RESULTS 61

single new label ℓ. The challenger then randomly selects a message m, and encrypts it,
generates the corresponding decryption token tok for A, and runs the Forget procedure
on the challenge ciphertext. Finally C returns to A the values (ct′, tok). The adversary’s
goal is now to correctly guess the challenger’s challenge message m. Let m∗ denote the
output of A at the end of the experiment in Figure 23, we say that A wins if m∗ = m.

Expforget.sec
HIKE,A (λ):

b←$ {0, 1}, Ltok = Llab = Lkeys = ∅,∆ = ∅
pp← Initialise(1λ)
(id∗, skid∗ , pkid∗)← A(pp)
Lkeys ← Lkeys ∪ (id∗, ∗, pkid∗)

O = {OSignUp(·), OEncrypt′(·, ·),
, ODisclose(·)}

ℓ∗ ← AO(pp)
parse ℓ∗ = (pkid, pkid′ , τ)

if ℓ∗ /∈ Llab or pkid = pkid∗ or pkid, pkid′ /∈ Lkeys

ct = error
else

m←$ M
ct← Encrypt(skid, ℓ

∗,m)
ct′ ← Destroy(ct)
∆← ∆ ∪ (ℓ∗, ct′)
tok← AllowAccess(skid, Iℓ∗)
Ltok ← Ltok ∪ {ℓ∗}; Llab ← Llab ∪ {ℓ∗}

m∗ ← AO(ct′, tok)
if m∗ = m return 1, else return 0.

Figure 23: The forgettability experiment

It is important to notice that the forget.sec experiment does not model an adversary
that is able to obtain the original ciphertext ct, e.g. via a database backup or some
previous random retrieve request. The main reason for this restriction is the necessity
to deploy an access control system on the database ∆ which is of independent interest.
On the other hand, to avoid an old-ciphertext to be reused, we can only suggest that
the client U never distributes the decryption token of queries that involve the label
corresponding to forgotten ciphertexts.

In a nutshell, our forgettability security statement below says that after a forget
request the user’s record encrypts a random message. In particular, we are able to
show that HIKE’s Forget procedure achieves information theoretic security in ‘hiding’
the original message m even under the presence of a malicious server.7

Theorem 3. The HIKE protocol achieves perfect forgettability, i.e. for any PPT ad-
versary A taking part to the experiment in Figure 23, it holds that:

Pr
[
ExpHIKE,A

forget.sec(()λ) = 1
]
=

1

|M|
Proof. The result follows trivially from the information theoretic security of the Destroy
algorithm demonstrated in Section 4.

7 Implementation details and results

In this section, we discuss our encoding map from the message space to elliptic curve
points. Afterwards, we describe the test-settings of our HIKE implementation with
respect to different elliptic curve choices.

7More precisely, if the server is honest-but-curious except with forget requests.

62 Paper B - HIKE: Walking the Privacy Trail

Encoding Messages on the Elliptic Curve. A typical design problem that arises
when using Elliptic Curve Cryptography (ECC) is to define an injective map ϕ from
a message space M to the subgroup G generated by a point P on an elliptic curve E .
This problem was firstly considered and “solved” by Koblitz in [Kob87] by exploiting
specific elliptic curves constructed over F2n for some appropriate n that depends on the
message space dimension.

The main issue with Koblitz’s map is that if we equip the message space M with
an operation ⋄ and obtain the group (M, ⋄), then it is generally false that ϕK is a
homomorphism between (M, ⋄) and (G,+), i.e.there exists two messages m1,m2 ∈ M
such that ϕK(m1 ⋄ m2) ̸= ϕK(m1) + ϕK(m2). A more natural homomorphism map is
given by ϕ : Zq → G as ϕ(m) := m ·P . The mapping is trivially a homomorphism when
considering the message space as the natural group (Zq,+). Unfortunately computing
the inverse map ϕ−1 is exactly the DLog problem.

In our HIKE protocol we use this natural map to encode messages, and therefore
the decryption procedure corresponds to solving an instance of the DLog problem. The
apparent contradiction is addressed by the following observation. The security of HIKE
relies on the hardness of solving the DLog problem (Assumption 1), but the efficiency of
the decryption procedure is guaranteed by the feasibility of solving the IDLP in a partic-
ular interval (Assumption 2). In our implementation of HIKE, we consider the natural
embedding ϕ and define a context-dependent message-space interval M = [a ... b], for
some a, b ∈ N. This trick works whenever the decryption knows an approximation of
the expected value. This is the case in most of the application scenarios we consider
(e.g. range of blood pressure values and range of kilometres run per day). Additionally,
the technique does not work when the message space is too big (e.g. floats of 64 bits)
or not known.

To demonstrate our claim, we carried out one experiment to test that the decryption
algorithm solves the IDLP in a reasonable time (see Figure 24b) whereas a malicious
adversary would still face the full DLog problem which is infeasible (see Figure 24a).

24 26 28 210 212 214 216 218 220 222
Number of checked

0

5000

10000

15000

20000

25000

30000

35000

Ti
m
e
in
 m

illi
se
co
nd

s

prime256v1
secp384r1
secp521r1

(a) Time needed to solve the DLog.

0 500k 1000k 1500k 2000k 2500k 3000k 3500k 4000k
Security parameter

0

5

10

15

20

25

30

35

Ti
m
e
in
 se

co
nd

s

prime256v1
secp384r1
secp521r1

(b) Time needed to solve IDLP.

Figure 24: Comparison between solving the DLog vs solving IDLP

We implemented an extremely naive brute-force attack that checks, sequentially and
incrementally, all the points of the selected interval. For this algorithm the worst-case
in the interval [a, ... , b] is the point b · P . In Figure 24a, we empirically measure the
running time of the our naive brute-force algorithm to solve the DLog problem with
respect to the security parameter. As expected, the problem is exponentially hard.
Then, in Figure 24b, we focus on a specific message space, i.e. numbers from 0 to 222

8. CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK 63

as justified by Assumption 2, and plot the required time needed to decrypt a specific
message.

HIKE Implementation. We have developed our HIKE scheme on Python by cre-
ating a new cryptographic scheme in the Charm Crypto framework [AGM+13]. The
source code of HIKE is freely available at https://github.com/Pica4x6/HIKE. For the
experiments, we used a MacBook Air with 2,2 GHz Intel Core i7 and 8 GB of RAM. We
executed the experiments 100 times independently using the timeit library and report
the average of the execution times in Table 1.

KGen Enc Dec Eval

prime256v1 0.9ms 280.0ms 13442.4ms 20.2ms
secp384r1 1.0ms 399.7ms 15149.3ms 19.0ms
secp521r1 1.3ms 426.6ms 17102.7ms 189.2ms

PublicKey TokenGen TokenDec Destroy

prime256v1 5.3ms 1293.2ms 14.5ms 6.4ms
secp384r1 70.1ms 1521.0.0ms 86.7ms 73.9ms
secp521r1 66.4ms 1837.5ms 101.2ms 68.0ms

Table 1: Benchmark of HIKE scheme using the natural encoding map ϕ.

In addition, we evaluated the performances of HIKE using the three elliptic curves
prime256v1, secp384r1 and secp521r1 that are recommended by the National Institute
of Standard and Technology (NIST) [NIS17]. Note that our implementation is agnostic
to the definition of elliptic curve, thus it can be easily adapted to work with any type
of elliptic curves defined in [AGM+13].

We remark that for every experiment, we randomly select a message in the HIKE
message space dimension in which IDLP is feasible by our Assumption 2 and our em-
pirical test in Figure 24.

8 Conclusions and directions for future work

In this paper, we proposed a new labelled homomorphic encryption scheme for multi-
variate linear polynomial functions called LEEG. LEEG can be seen as a variant of
ElGamal encryption on elliptic curve groups. We showed that LEEG supports additional
features that are not commonly investigated for encryption scheme. We call this set
of extra algorithms FEET, as it extends LEEG and improves its versatility. We then
combined LEEG and FEET to make HIKE, a lightweight protocol designed for privately
and securely store users’ data while keeping it accessible to data owners and authorised
service-providers. Application scenarios for HIKE include sport-tracking activity and
simple e-Health alter systems. We deployed HIKE on Python and benchmarked its
performance. Finally, we included in our security model some GDPR-inspired notions
and proved that HIKE provides: (i) encrypted storage of the client’s data; (ii) data
owner’s right to disclose information (including computation on data) to designated
service-providers; and (iii) the right to be forgotten, i.e. the possibility for data owners
to request that selected records be made un-recoverable.

We identify some direction for further development of our HIKE protocol. First, since
HIKE is based on a semantic-secure homomorphic encryption scheme, it cannot tolerate
a malicious server. It would be interesting to design protocols with no trust on the
server, thus providing both data confidentiality and integrity. Second, there are other

https://github.com/Pica4x6/HIKE

64 Paper B - HIKE: Walking the Privacy Trail

extra features (not just FEET) that are worth developing. For example: generation of
disclosure-tokens to allow any (chosen) third-party to decrypt a chosen computation
on the user’s data; introducing a trusted authority (e.g. a legal entity) with the power
of decrypting malicious users’ data only if it collaborates with the designated service
providers; enabling secure “editable decryption” to support the rectification right (art.
16 in GDPR). Third, it would be worth investigating multi-key properties in LEEG.
Such extension would for instance enable service-providers to perform statistic on data
generated by different.

To the best of our knowledge, HIKE is the first cryptographic protocol proven to meet
specific real-world privacy requirements, and we hope that it constitutes a springing-
board for future works. We believe that a GDPR-oriented design of cryptographic pro-
tocols and primitives would facilitate developers implementation choices when designing
new digital-services, as well as ensure cryptographically-proven security in the data-flow,
leading to privacy-by-design solutions.

Acknowledgement. We thank the anonymous reviewers for their insightful comments
and Erik-Oliver Blass for kindly shepherding us during this publication.

Conclusions and directions for future work 65

Lattice-Based Simulatable VRFs: Challenges and Future Directions

Carlo Brunetta, Bei Liang, and Aikaterini Mitrokotsa

Chalmers University of Technology, Gothenburg, Sweden

12th International Conference on Provable Security (PROVSEC), 2018
Presented at the 1st PROVSEC Workshop, Jeju (Rep. of Korea)

Journal of Internet Services and Information Security
Vol. 8, No. 4 (November, 2018)

Paper C - Lattice-Based Simulatable VRFs: Challenges and Future Directions 69

Abstract: Lattice-based cryptography is evolving rapidly and is often employed to
design cryptographic primitives that hold a great promise to be post-quantum resistant
and can be employed in multiple application settings such as: e-cash, unique digital
signatures, non-interactive lottery and others. In such application scenarios, a user is
often required to prove non-interactively the correct computation of a pseudo-random
function Fk(x) without revealing the secret key k used. Commitment schemes are also
useful in application settings requiring to commit to a chosen but secret value that
could be revealed later.

In this short paper, we provide our insights on constructing a lattice-based simulat-
able verifiable random function (sVRF) using non interactive zero knowledge arguments
and dual-mode commitment schemes and we point out the main challenges that need
to be addressed in order to achieve it.

Keywords: Dual-Mode Commitment Scheme, Lattice-based Cryptography,
Non Interactive Zero Knowledge Arguments, Pseudo Random Functions,
Verifiable Random Functions

70 Paper C - Lattice-Based Simulatable VRFs: Challenges and Future Directions

1 Introduction

Zero-knowledge (ZK) proofs [LLNW17] are employed to prove the knowledge of secret
information while preserving the provers’ privacy with respect to an NP language.
Depending on whether the zero-knowledge proof is performed interactively or not, we
may have interactive or non-interactive protocols; while the latter are more efficient
regarding communication costs.

Pseudo-random functions (PRFs) [GGM86] are a very useful cryptographic primitive
that is often employed in combination with zero-knowledge proofs in multiple application
scenarios. Let us consider a general scenario: a prover P wants to prove to a verifier V
the knowledge of a secret w and the correct computation of a PRF Fw on the input x,
i.e., Fw(x). A rather important question is:

How may P prove to V the correct evaluation of the PRF Fw(x) without leaking any
information about w, just by providing a proof π?

We consider the case where the communication between P and V should be non-
interactive, i.e., P needs to provide V all the necessary information to verify the correct
computations in a single step.

The above stated question can be solved by employing a verifiable random function
(VRF) [MVR99]. A VRF is a PRF with two additional algorithms; one algorithm that
is able to generate a proof π of the correct computation of the PRF Fw(x) as well as a
verification algorithm.

Verifiable random functions have a broad range of applications where the veri-
fication of a pseudorandom value is required. For instance, VRFs are employed in
non-interactive lottery systems used in micropayments [MR02], domain name security
extensions (DNSSEC) [GNP+15, PWH+17] as well as proof-of-stake blockchain proto-
cols [LABK17, DGKR18]. For instance, recent papers [LABK17, DGKR18] use VRFs in
blockchain consensus protocols i.e., in order to either define a fair and verifiable lottery
in which the winner will publish the next block, or as a way to generate a “common
and shared random string” which can be seen as an equivalent of the CRS model.

Although algebraic pseudo-random functions and ZK proofs are well studied prim-
itives, they have received limited attention in lattice settings; furthermore, to the best
of our knowledge, building lattice-based VRFs is an open problem.

Lattice-based cryptographic primitives [Ajt96, Pei16], mainly rely on the learning
with errors (LWE) [Reg10] and the short integer solution (SIS) [MP13] problems; they
are quite promising for providing post-quantum resistance guarantees, while also offering
simpler arithmetic operations and thus, important efficiency guarantees.

Designing a lattice-based VRF is a challenging and currently open problem since it
requires a non-interactive proof in the standard model. As a step towards this direction,
in this short paper, we provide our insights on designing a lattice-based simulatable VRF
(sVRF), originally introduced by Chase and Lysyanskaya [CL07]. Informally, an sVRF
is a VRF defined in a public parameter model, such as the common random string
(CRS) model, which implies the existence of honest common parameters on the top
of the standard VRF system. More precisely, besides the usual algorithms in a VRF
there is an additional parameter generation algorithm which takes as input the security
parameters and output the public parametrs pp. Both the input domain and the output
range of the sVRF depend on pp. Meanwhile, pp is included in the inputs for all the
algorithms KeyGen, Eval, Prove and Verify. Moreover, except of the uniqueness and
pseudorandomness properties, sVRFs should also satisfy simulatability which is a novel
property making them different from VRFs. Simulatability states that there exists a
simulator that is able to simulate the common parameters such that, corresponding to a
verification key, for any x, y, it is possible to produce a proof π that F (sk, x) = y. The
simulated transcription is required to be indistinguishable from the values computed

Introduction 71

from the parameters that are generated honestly. In this paper, we describe our insights
on constructing an sVRF when relying on Libert et al.’s [LLNW17] method to prove
zero-knowledge arguments for lattice-based PRFs. Furthermore, we describe the main
challenges that need to be addressed in order to construct a lattice-based sVRF using
this method.

1.1 A Roadmap to Lattice-based sVRFs
Chase and Lysyanskaya [CL07] provided a general construction of sVRFs from a per-
fectly binding computational hiding non-interactive commitment scheme and an uncon-
ditionally sound multi-theorem NIZK for NP. Their main idea is to use a multi-theorem
NIZK to generate the proof for a statement that the public verification key is a commit-
ment of the secret key and the function value is the correct result on the input applied
to the secret-keyed PRF, i.e., pk = Com(sk; r) ∧ y = F (sk, x). However, such solution
is based on a general assumption; in order to propose a lattice-based sVRF, we should
specify a lattice-based PRF scheme.

Fortunately, thanks to the very recent significant results of Boneh et al. [BLMR13]
who proposed a LWE-based key homomorphic PRFs as well as Libert et al.’s [LLNW17]
three round zero-knowledge arguments of correct evaluation for the LWE-based PRF
Boneh et al. [BLMR13] w.r.t. committed keys and inputs, it is possible to obtain a
non-interactive solution of y = F (sk, x) as the correct evaluation of a PRF for a secret
input x and a committed key sk. These results could be potentially employed in order
to construct a lattice-based sVRF as we explore in this paper.

Libert et al. have significant contributions [LLNW17, LLM+16, LLNW18] in the
area of designing efficient zero-knowledge proofs for lattice-related language. For in-
stance, Libert et al. [LLM+16] considered how to construct zero-knowledge arguments
of knowledge of a secret matrix X and vectors s, e such that for a public vector b it
holds b = X · s + e mod q. Libert et al. [LLNW18] also investigated in the lattice
setting how to design zero-knowledge arguments for the statement that cx, cy and cz
are the commitments to the polynomial-size bit-strings x, y and z which are the binary
representations of large integers X,Y, Z satisfying certain algebraic relations such as
Z = X + Y and Z = X · Y .

In order to obtain zero-knowledge arguments for the correct evaluation of the key-
homomorphic PRF 8 proposed by Boneh et al. [BLMR13] , Libert et al. [LLNW17]
presented a useful abstraction of Stern’s protocol [Ste96] and they modified Boneh et
al.’s lattice PRF [BLMR13] in order to efficiently prove the correct computation of the
PRF value interactively, while providing zero-knowledge guarantees.

As stated in their paper [LLNW17], it is possible to obtain the first non-interactive
lattice-based zero-knowledge protocol by directly applying the Fiat-Shamir transform-
ation [FS87]. The main issue with this choice is that the Fiat-Shamir transformation is
secure in the Random Oracle Model (ROM) which is against the original sVRF defini-
tion [CL07].

Thus, our main research objective is to find an appropriate transformation from ZK
to NIZK, defined over lattices, not relying on the ROM. In Figure 25, we depict two dif-
ferent strategies in order to obtain a lattice-based sVRF: either by directly transforming
Libert et al.’s ZK argument or by providing a different lattice-based ZK PRF proof sys-
tem and applying a ZK to the NIZK transformation and then the Chase-Lysyanskaya’s
transformation from NIZK to sVRF.

8Namely demonstrating knowledge of a committed secret key k, a secret input J and an output
y satisfying y = Fk(J)

72 Paper C - Lattice-Based Simulatable VRFs: Challenges and Future Directions

Libert’s ZK

Lattice ZK Lattice NIZK Lattice sVRF

Transf.

Transf. Chase et. al [CL07]

Figure 25: A roadmap to lattice-based sVRF. In bold, this paper’s main research focus.

2 Applying Lindell’s Tranformation

In this section, we provide our findings on defining an sVRF based on Libert’s ZK
argument [LLNW17] and Lindell’s transformation [Lin15].

The latter [Lin15] can be applied to any sigma-protocol and transform it into a cor-
responding NIZK protocol. In contrast to Fiat-Shamir’s transformation [FS87], Lindell’s
transformation does not require the random oracle model. More precisely, in Lindell’s
transformation the zero-knowledge property holds in the common reference string (CRS)
model, while in order to achieve soundness, the used hash function is modeled as a non-
programmable random oracle [Nie02]. In order to adopt Lindell’s transformation an
important requirement is that of a dual-mode commitment scheme.

The main concept of a commitment scheme is that it is possible to secretly fix some
message m that is used in a protocol and in a second phase, open the commitment
and therefore prove the correct knowledge or possession of the specific message m.
Designing lattice-based commitment schemes has already received some attention in
the literature [BKLP15, BDL+16].

The dual-mode commitment represents the possibility to sample a statement in
a language L via a bit b and use the commitment scheme in a binding way, i.e., a
commitment c can be decommitted in a unique message m, or in a “trapdoor” way, i.e.,
that with some secret witness w, it is possible to decommit c to any message m′.

Thus, the main property required for a dual-mode commitment scheme is that it is
impossible to distinguish how the bit b is selected and therefore impossible to know if
we are decommitting to the original message or we are using the trapdoor to decommit
to an arbitrary message. A dual-mode commitment scheme represents a specific type of
commitment schemes that are equivalently defined by Catalano and Visconti as hybrid
commitment schemes [CV07].

As described in [Lin15], in order to define a dual-mode commitment scheme, Lindell
requires a membership-hard efficient-sampling language defined as follows:

Definition 17 (Membership-hard with Efficient Sampling [Lin15]). Let L be a lan-
guage. L is membership-hard with efficient sampling (MHES) if there exists a prob-
abilistic polynomial-time sampler SL such that for every probabilistic polynomial-time
distinguisher D there exists a negligible function µ(·) such that:

|Pr [D(SxL(0, 1
n), 1n) = 1]− Pr [D(SL(1, 1

n), 1n) = 1]| ≤ µ(n)

where SL(b, ·) is a sampler that returns an instance in the language L if b = 0 and
an instance not in the language L if b = 1. SxL denotes only the instance without the
witness.

In a nutshell, the MHES language L is a language in which it is hard to distinguish
if an efficient sampling algorithm SL sampled the statement x in the language L or not:
it is hard to decide the membership of x ∈ L but it is easy to sample x in the language
(or not).

In summary, in order to build an sVRF while employing the Lindell’s transformation,
the main building blocks required are depicted in Figure 26.

Applying Lindell’s Tranformation 73

MHES
Language

Dual Mode
Commitment

Scheme

Lindell’s
Transf.

defines used for

Figure 26: A roadmap to Lindell’s transformation.

By assuming the hardness of the inhomogeneous short integer solution (ISIS) prob-
lem, if we follow the idea and structure of the DDH language construction proposed by
Lindell [Lin15] in order to define the language LIS of Eq. (11), the result is unfortunately
not MHES for common lattice security parameters.

LIS := {(A,B,u,v) | A,B ∈ Zp
n×m, w̃ ∈ {0, 1}m,u = Aw̃,v = Bw̃}. (11)

This is the case since whenever we provide a statement not in the language (A,B,u,v) /∈
LIS, it exists in fact a statement (A,B,Aw̃′,Aw̃′) ∈ LIS in the language for some w̃′.
Thus it cannot be used to define a dual-mode commitment scheme mainly because the
commitment scheme will not be perfectly binding, which is a necessary condition in
order to use Lindell’s transformation.

If we do assume that there exists a hard problem in the format that given A ∈ Dom
and y ∈ Rang, it is hard to find z ∈ PreD such that Az = y, then, on the ground of
such an assumption, we can define our language as:

L := {(A,B,Aw̃,Bw̃) | A,B ∈ Dom, w̃ ∈ PreD}. (12)

The sampler SL can be defined as: whenever SL(0, 1n) outputs a random tuple
(A,B,Aw̃,Bw̃), and SL(1, 1

n) outputs a random tuple (A,B,Aw̃,Bw̃′) of which
Aw̃ ̸= Aw̃′ and Bw̃ ̸= Bw̃′. It is obvious to conclude that the language L defined as
in Equation 12 is efficient sampling and membership-hard.

2.1 Dual-mode Commitment

In this section, we provide the formal definition of a dual-mode commitment scheme
which is introduced by Lindell [Lin15] and present a dual-mode commitment scheme
based on the language L.

Definition 18 (Dual-mode commitment scheme [Lin15]). A dual-mode commitment
scheme is a tuple of probabilistic polynomial-time algorithms (GenCRS, Com, Scom) such
that:

• GenCRS(1λ) : outputs a common reference string, denoted crs,

• (GenCRS,Com,Decom,ReceiverDecom) : When crs← GenCRS(1λ) and m ∈ {0, 1}λ,
the algorithm Comcrs(m; r) with a random r is a non-interactive perfectly-binding
commitment scheme with decommitment algorithm Decom and decommitment veri-
fication algorithm ReceiverDecom.
(We require that ReceiverDecomcrs(Comcrs(m; r),Decomcrs(m; r)) = m except with
negligible probability.)

• (Com,Scom) : For every probabilistic polynomial-time adversary A and every poly-
nomial p(·), the output of the following two experiments are computationally in-
distinguishable.

74 Paper C - Lattice-Based Simulatable VRFs: Challenges and Future Directions

RealCom,A(1
λ) :

(a) crs← GenCRS(1λ); c,d← ∅

(b) For i = 1, ... , p(λ) :

(a) mi ← A(crs, c,d)
(b) ci = Comcrs(mi; ri) for ri ∈
{0, 1}poly(λ)

(c) di = Decomcrs(mi; ri)

(d) Set c = c1, ... , ci and d =
d1, ... , di

(c) Output A(crs,m1, ... ,mp(λ), c,d)

SimulationScom(1
λ) :

(a) crs← Scom(1λ); c,d← ∅

(b) For i = 1, ... , p(λ) :

(a) ci ← Scom
(b) mi ← A(crs, c,d)

(c) di ← Scom(mi)

(d) Set c = c1, ... , ci and d =
d1, ... , di

(c) Output A(crs,m1, ... ,mp(λ), c,d)

Below we describe an instantiation of a dual-mode commitment scheme.

Protocol 1 (Instantiation of Dual-Mode Commitment).

• Regular CRS generation: A,B← Dom, w̃1, w̃2 ←R PreD, and compute w1 = Aw̃1

and w2 = Bw̃2. The CRS is (A,B,w1,w2).

• Alternative CRS generation (equivocal): As above, except of the fact that we also
choose a single w̃←R PreD and compute w1 = Aw̃ and w2 = Bw̃.

• Commitment: To commit to a bit e ∈ {0, 1}, choose a random z ←R PreD and
compute y1 = Az− ew1, y2 = Bz− ew2. The commitment is c = (y1,y2).

• Decommitment: To decommit to c = (y1,y2), provide (e, z).

• Receiver decommitment: The receiver outputs e if Az = y1 + ew1 and Bz =
y2 + ew2. Otherwise, it outputs ⊥.

• Simulator Scom:

(a) Run the sampler SL for the language L as equation (12) with input (0, 1λ):
i.e.,

(A,B,Aw̃,Bw̃, w̃)← SL(0, 1
λ)

and set the CRS as (A,B,Aw̃,Bw̃). Then, Scom randomly samples ỹ ←R

PreD and computes y1 = Aỹ and y2 = Bỹ. Set c = (y1,y2).
(b) For a bit e ∈ {0, 1}, Scom computes z = ỹ+ew̃, and outputs the decommitment

(e, z).

2.2 A Non-Interactive Zero-Knowledge Argument for a Lattice Based
PRF

In this subsection, we provide a non-interactive zero-knowledge argument for the correct
evaluation of the lattice-based PRF proposed by Boneh et al. [BLMR13]. We construct
non-interactive zero-knowledge arguments of knowledge of a committed seed k, a secret
input J and an output y satisfying y = Fk(J). We describe such arguments for the
key-homomorphic PRF of Boneh et al. [BLMR13] and the PRF obtained by applying
the Goldreich-Goldwasser-Micali (GGM) [GGM86] paradigm.

Applying Lindell’s Tranformation 75

Recently, Libert et al. [LLNW17] have proposed zero-knowledge arguments for
statements for which the given value y = ⌊

∏L
i=1 PJ[L+1−i] · k⌋p ∈ Zmp is the correct

evaluation for a committed seed k ∈ Zmp and a secret input J[1] ...J[L] ∈ {0, 1}L,
where P0,P1 ∈ {0, 1}m×m are public binary matrices, without revealing neither k nor
J[1] ...J[L]. More precisely, they have used Stern’s protocol [Ste96], which is adapted
to handle correlated witnesses across relations modulo distinct integers.

An added ingredient to our recipe is Lindell’s transformation [Lin15]: a Fiat-Shamir
type transformation from sigma protocols to non-interactive zero knowledge argument;
which employs a commitment scheme in the CRS model with the property that it is
perfectly binding given the correctly constructed CRS, but it is equivocal to a simulator
who generates the CRS in an alternative but indistinguishable way. In other words, the
simulator can generate the CRS so that it looks like a real one, but a commitment can
be decommitted to any value. In order to use Lindell’s transformation in our context,
a lattice based dual-mode commitment scheme is necessary.

In our Protocol 1, we show a concrete instantiation of a dual-mode commitment
scheme. Following this, we can apply Lindell’s transformation [Lin15] on Libert’s ab-
stract sigma-protocol [LLNW17]. In Libert’s paper [LLNW17], there is the precise
translation from the Boneh’s PRF [BLMR13] to the abstract protocol’s hypothesis
which are extracted and summarized in Section 3. To avoid heavy notation, we will use
just the general and abstract construction since the specific instantiation for the PRF
is proved to be correct and implementable by Libert et al. [LLNW17].

Definition 19 (The abstract statement [LLNW17]). Let ni, di ≥ ni be positive integers.
Let d =

∑N
i=1 di. Suppose VALID ⊆ {−1, 0, 1}d and S a finite set such that for any ϕ ∈ S

it is possible to associate to a permutation Γϕ of d elements such that:{
w ∈ VALID ⇐⇒ Γϕ(w) ∈ VALID

If w ∈ VALID ∧ϕ uniform in S =⇒ Γϕ(w) uniform in VALID

Let us consider public matrices M := {Mi ∈ Zqi
n×di}i∈[1..N] and vectors u := ui ∈

Zni
qi , the prover argues in zero-knowledge the possession of integer vectors w := {w ∈
{−1, 0, 1}di}i∈[1..N] such that:{

w = (w1∥w2∥ ... ∥wN) ∈ VALID

∀ i ∈ [1..N] .Mi ·wi = ui (mod qi)

The described tuple (M,u) defines a statement of which w is the witness.

The protocol makes use of a statistically hiding and computationally binding string
commitment scheme such as the SIS-based commitment of [KTX08]. Libert et al. have
also shown that by assuming the commitment scheme (Com,Decom) to be a statistically
hiding and computationally binding string commitment, then their protocol is a zero-
knowledge argument of knowledge for the given statement with perfect completeness
and soundness error 2/3. Based on the three round interaction protocol in [LLNW17]
and Lindell’s transformation [Lin15], by employing our lattice-based dual commitment
scheme instantiated in Protocol 1, a non-interactive zero-knowledge argument for the
correct evaluation of Boneh et al.’s lattice-based pseudo-random function [BLMR13] is
yielded as follows:

Protocol 2. Let Com be a statistically hiding and computationally binding string com-
mitment scheme, for example the SIS-based commitment defined in [KTX08]. Let
(DRegularCRS,DCom,DReceiverDecom,DDecom) be our lattice-based dual-mode com-
mitment scheme of Protocol 1 and let Hk : {0, 1}∗ → {1, 2, 3} a keyed hash function.

76 Paper C - Lattice-Based Simulatable VRFs: Challenges and Future Directions

Our NIZK argument protocol (GenCRS,Prove,Verify) for the correct evaluation of
Boneh et al.’s lattice-based PRF [BLMR13] is defined as the following three algorithms:

• Inputs: Let M = {Mi ∈ Zqi
ni×di}i∈[N] be a set of matrices, for all i ∈ [1, ... , N],

let wi ∈ {−1, 0, 1}di and w = ∥Ni=1wi ∈ VALID.
Let ui := Mi ·wi (mod qi) and define u = ∥Ni=1ui.
The common input consists of M = {Mi}i∈[N] and u = {ui}i∈[N], while the
prover’s secret input (witness) is w = w1∥ · · · ∥wN.

• GenCRS: The CRS consists of the regular CRS ρ of our dual-mode commitment
scheme, Protocol 1, and a key s for the hash function H.

• Prove: Takes as input the statement (M,u), the witness w and the CRS ρ. The al-
gorithm computes three different commitments C1, C2, C3 using the standard com-
mitment scheme.
Afterwards, these commitments are then committed using the dual-mode commit-
ment scheme and the commitment c is computed and the decommit (a, τ) used for
the decommitment. As a final step, depending on the hash of the statement and
the commit c, we provide b.

The algorithm outputs the statement (M,u), the commit c, the decommit inform-
ation (a, τ) and b. We can see (c, a, τ, b) as the proof for (M,u).

Algorithm 1 describe it in details.

Algorithm 1 Prover P: Prove((M,u),w, ρ)

(a) – Sample ϕ←RS, for i ∈ 1, ... , N sample ri←RZdiqi and define r = ∥Ni=1ri as the
concatenation of ris and v = w ⊞ r as vi = wi + ri (mod qi) for all
i ∈ {1, ... , N}.

– Sample ρ1, ρ2, ρ3 and compute

C1 = Com(ϕ, {M · ri (mod qi)}Ni=1 ; ρ1) C2 = Com(Γϕ(r); ρ2)

C3 = Com(Γϕ(v); ρ3)

(b) Define a = (C1, C2, C3)

(c) Compute c = DComρ(a; τ) and DDecomρ(a; τ) = (a, τ), where DComρ(a; τ) is our
dual-mode commitment to a using randomness τ and CRS ρ, and (a, τ) is its
corresponding decommitment;

(d) Compute e = Hs((M,u), c)

(e) Define b to be

b =

(Γϕ(w),Γϕ(r), ρ2, ρ3) when e = 1

(ϕ,v, ρ1, ρ3) when e = 2

(ϕ, r, ρ1, ρ2) when e = 3

Output: π = ((M,u), c, a, τ, b)

• Verify: Takes as input the statement (M,u), the commit c, the decommit inform-
ation a, τ and b.

3. TRANSLATION OF BONEH’S PRF 77

Initially, the algorithm decommits c of the dual-mode commitment using (a, τ)
in order to obtain a = (C1, C2, C3). Depending on the digest of the hash of the
statement and c, a different check is made on Ci and b.
The output is 1 if all the checks hold, 0 otherwise.
Algorithm 2 describes the Verify algorithm in details.

Algorithm 2 Verifier V: Verify((M,u), c, d, b)

(a) Compute a = DReceiverDecom(c, (a, τ)). If a = ⊥, output 0.
(b) Compute e = Hs((M,u), c)

(c) Compute and verify
(a) If e = 1, let b = (t, s, ρ2, ρ3). Check that t ∈ VALID, C2 = Com(s; ρ2) and

C3 = Com(t⊞ s; ρ3).
(b) If e = 2, let b = (π,x, ρ1, ρ3), parse x = (x1∥ · · · ∥xN),xi ∈ Zdiqi , check that

C2 = Com(π, {Mi · xi − ui (mod qi)}Ni=1; ρ1) and C3 = Com(Γπ(x); ρ3).
(c) If e = 3, let b = (ψ,y, ρ1, ρ2). parse y = (y1∥ · · · ∥yN),yi ∈ Zdiqi and check

that C1 = Com(ψ, {Mi · yi (mod qi)}Ni=1; ρ1) and C2 = Com(Γψ(y); ρ2).
(d) If the verification fails, output 0. Otherwise output 1.

3 Translation of Boneh’s PRF

For completeness of the paper, we provide the specific instantiation of Boneh’s lattice-
based PRF [BLMR13] used in our Protocol 2, which is described and explained in
details in Libert et al. [LLNW17].

For any t positive integer, define the following:

• St: the set of all t-elements permutations.

• B2
t : the set of vectors in {0, 1}2t with Hamming weight t.

• B3
t : the set of vectors in {−1, 0, 1}3t with exactly t elements equal to−1, t elements

equal to 0 and t elements equal to 1.

Let Expand be the function that for every bit c and for all vectors v ∈ Zt, it is
defined as:

Expand(c,v) :=

(
(1− c) · v
c · v

)
∈ Z2t

Let Tc,π be defined for every bit c, for all vectors v :=

(
v0

v1

)
∈ Z2t where v0,v1 ∈ Zt

and for all permutation π ∈ St, as

Tc,π(v) :=

(
π(vc)
π(v1−c)

)
For any B ∈ Z, B > 0, let us consider a specific way to represent integers, sim-

ilar to the binary representation of B: define δB := ⌊log2B⌋ + 1 and the sequence
{Bj}j∈[1..δB] with Bj :=

⌊
B+2j−1

2j

⌋
for every j ∈ [1..δB]. For every integer v ∈ [0..B],

define idecB(v) := (v(1), v(2), ... , v(δB)) ∈ {0, 1}δB such that
∑
j∈[1..δB]Bjv(j) = v.

78 Paper C - Lattice-Based Simulatable VRFs: Challenges and Future Directions

Let σ(x) be the standard sign function and define

vdec′t,B : [−B,B]t → {−1, 0, 1}tδB
(w1, ... , wt) 7→ (σ(w1) · idecB(w1), ... , σ(wt) · idecB(wt))

and vdect,B : [0, B]t → {0, 1}tδB as vdec′ on the smaller domain [0, B]t.
In order to close the change-representation function, let us define the matrix:

Ht,B =

B1 ... BδB

B1 ... BδB
. . .

B1 ... BδB

 ∈ Zt×tδB

while, for all v ∈ [−B,B]t, it holds Ht,B · vdec′t,B(v) = v
Next, let us consider specific maps that map a vector inside either B2

t or B3
t : for

all v ∈ {0, 1}t, define TwoExt(v) := (v∥0t−n0∥1t−n1) ∈ B2
t where nj is the num-

ber of coordinates in v equal to j. For all v ∈ {−1, 0, 1}t, define ThreeExt(v) :=
(v∥0t−n0∥1t−n1∥(−1)t−n−1) ∈ B3

t where nj is the number of coordinates in v equal to
j.

Similarly, for any B ∈ Z, B > 0, let us consider the matrices:

Ĥt,B :=
[
Ht,B 0t×tδB

]
H̃t,B :=

[
Ht,B 0t×2tδB

]
that just extend the specific identity property of Ht,B with respect to the image of
TwoExt and ThreeExt respectively.

The next step is to transform Boneh’s PRF [BLMR13]. Let us consider public
binary matrices P0, P1 ∈ {0, 1}m×m, a committed seed k ∈ Zmq and a secret bitstring
(J1, ... , JL) ∈ {0, 1}L and define the matrix

P :=
[
P0 · Ĥm,q−1 P1 · Ĥm,q−1

]
∈ Zm×4m

q

Let us consider public matrices D0 ∈ Zn×m0
q1 , D1 ∈ Zn×mq1 for some modulus q1, for

some integer m0 and m = mδq−1. Let r ∈ [−β, β]m0 be a discrete Gaussian vector with
small β and define the vector

r̃ := ThreeExt(vdec′m0,β(r)) ∈ B3
m0δβ

Define x0 = k, for each i ∈ [1, L], compute xi = PJixi−1 (mod q) and y = ⌊xL⌋p.
For all i ∈ [1, L], define the vectors x̂i := TwoExt(vdecm,q−1(xi)) ∈ B2

m and si−1 :=
Expand(Ji, x̂i−1) ∈ B2

2m.

Let ẑ ∈ B2
m. Let w1 := (r̃∥x̂0), M1 = [D0 · H̃m0,β D1 0n×m] and u1 =

M1 ·w1 (mod q1).
Let w2 := (s0∥x̂1∥s1∥x̂2∥... ∥sL−1∥x̂L), u2 = 0 and

M2 =

P −Ĥm,q−1

.
P −Ĥm,q−1

Let w3 := (x̂L∥z), M3 := [(p · Ĥm,q−1) Ĥm,q−1] and u3 := q · y.

Let us define d1 = 3m0δβ+2m, d2 = 6Lm and d3 = 4m as the dimensions of w1,w2

and w3. Let q2 = q, q3 = pq and d = d1 + d2 + d3.

4. CHALLENGES AND FUTURE DIRECTIONS 79

It holds Mi ·wi = ui (mod qi) for i ∈ {1, 2, 3} and w = (w1∥w2∥w3) ∈ {−1, 0, 1}d
of the form

w = (r̃∥x̂0∥s0∥x̂1∥s1∥x̂2∥... ∥sL−1∥x̂L∥x̂L∥z)

Let us define the set VALID as the set of w such that:

• r̃ ∈ B3
m0δβ

and x̂0, ... , x̂L, z ∈ B2
m

• for all i ∈ [1, L], si−1 = Expand(Ji, x̂i−1) for some Ji ∈ {0, 1}

Let us define S := S3m0δβ ×(S2m)L+2 × {0, 1}L.
For every element π = (πr, π0, π1, ... , πL, πz, b1, ... , bL) ∈ S, let Γπ be the permutation
of the vector w ∈ Zd defined as

Γπ(w) := (πr(r̃)∥π0(x̂0)∥Tb1,π0(s0)∥π1(x̂1)∥Tb2,π1(s1)∥
∥π2(x̂2)∥... ∥TbL,πL−1(sL−1)∥πL(x̂L)∥πL(x̂L)∥πL(z))

4 Challenges and Future Directions

In this section we will briefly discuss and collect our conjectures and/or our future
research directions by dividing them into into two major classes: a first class of questions
related to transformations from ZK to NIZK and a second class of challenges regarding
lattice languages.

4.1 ZK Transformations
Choosing Lindell’s transformation is not optimal for the final goal of constructing an
sVRF since the transformation is defined in the non-programmable ROM.

Ciampi et al. [CPSV16] modified and improved Lindell’s transformation: the trans-
formation does not require the non-programmable random oracle nor a perfectly binding
commitment scheme at the cost of a more specific language. By using Ciampi et al.’s
transformation, it might be possible to obtain a ZK to NIZK transformation not based
on the ROM.

Challenge 1. Is it possible to use Ciampi et al. transformation in our sVRF construction-
idea? The main challenge of this approach is to check if any lattice-based language can
be defined in order to fulfil the transformation hypothesis and requirement.

With the same spirit, we find an additional challenge of more general interest: a ZK
to NIZK transformation that is not defined in the random oracle model (or any similar
ones). Therefore, we state as a general challenge for future investigation:

Challenge 2. Are there any other transformations in the literature that can be used
for our construction-idea? Are they efficient? How do they compare among themselves
or with respect to the Fiat-Shamir’s transformation?

4.2 Lattice Languages
When considering the Lindell’s transformation, the language LIS is ill-defined and there-
fore cannot be used in order to build a dual-mode commitment scheme. Furthermore,
the language challenge of defining a membership-hard language can be seen as of per-
pendicular interest.

Challenge 3. Is there a way to define a lattice-based membership-hard efficient sampling
language L that can be used to define a dual-mode commitment scheme?

80 Paper C - Lattice-Based Simulatable VRFs: Challenges and Future Directions

Generally speaking and quite informally, the main obstacle is finding “good”-languages
that have a “unique-witness”. This means that it would be incredibly useful to find a
lattice-language L in which the witness of a statement x ∈ L is unique. Solving this
problem will open new directions in lattice-based cryptography.

Challenge 4. Find a lattice-based language L in which every statement x ∈ L has a
unique witness w.

As a different but related problem, if we consider a different ZK PRF proof system,
the ZK language used for our construction-idea requires an additional property in order
to be used by the Chase-Lysyanskaya’s transformation. The ZK system has to be able
to prove the correct computation of the PRF and the correctness of an additional
commitment. It has to be defined over lattices and, after transforming it with the best
ZK to NIZK transformation possible, the obtained NIZK has to be multi-theorem.

Challenge 5. Given the best ZK transformation, find a ZK PRF argument/proof sys-
tem that can be used for the Chase-Lysyanskaya’s transformation.

Acknowledgement.

We are grateful to the anonymous reviewers for their insightful comments, suggestions,
discussions and the new literature-directions provided. This work was partially sup-
ported by the Swedish Research Council (Vetenskapsrådet) through the grant PRECIS
(621-2014-4845).

Challenges and Future Directions 81

Code-Based Zero Knowledge PRF Arguments

Carlo Brunetta, Bei Liang and Aikaterini Mitrokotsa

Chalmers University of Technology, Gothenburg, Sweden

22-th Information Security Conference (ISC) 2019
New York (USA)

Paper D - Code-Based Zero Knowledge PRF Arguments 85

Abstract: Pseudo-random functions are a useful cryptographic primitive that, can
be combined with zero-knowledge proof systems in order to achieve privacy-preserving
identification. Libert et al. (ASIACRYPT 2017) has investigated the problem of prov-
ing the correct evaluation of lattice-based PRFs based on the Learning-With-Rounding
(LWR) problem. In this paper, we go beyond lattice-based assumptions and investig-
ate, whether we can solve the question of proving the correct evaluation of PRFs based
on code-based assumptions such as the Syndrome Decoding problem. The answer is
affirmative and we achieve it by firstly introducing a very efficient code-based PRG
based on the Regular Syndrome Decoding problem and subsequently, we give a direct
construction of a code-based PRF. Thirdly, we provide a zero-knowledge protocol for
the correct evaluation of a code-based PRF, which allows a prover to convince a veri-
fier that a given output y is indeed computed from the code-based PRF with a secret
key k on an input x, i.e., y = f(k, x). Finally, we analytically evaluate the protocol’s
communication costs.

Keywords: Coding Theory, Zero Knowledge, Pseudorandom Function, PRF
Argument, Syndrome Decoding

86 Paper D - Code-Based Zero Knowledge PRF Arguments

1 Intro

Pseudo-random functions (PRFs) is a fundamental cryptographic primitive that can
be employed to authenticate users, since they generate unique pseudorandom num-
bers. Zero-knowledge (ZK) proofs are often used to enforce honest behaviour or prove
the identity of users, while providing strong privacy guarantees. By combining pseudo-
random functions with zero-knowledge proofs, it is possible to achieve privacy-preserving
user identification and answer the following question:

How may a prover P prove to a verifier V, the correct evaluation of a PRF function
f(k, x) = y, without leaking any information about k?

This is a rather important question with multiple applications, e.g., e-cash, unique
digital signatures, non-interactive lottery and more. Although algebraic (based on
number-theoretic hardness assumptions) pseudo-random functions and zero-knowledge
proofs, are well studied primitives; there has been comparatively “less progress” on
these primitives based on post-quantum cryptographic assumptions such as code-based,
hash-based, and multivariate-based.

Libert et al. [LLNW17] has recently addressed this problem based on lattice-based
assumptions and more precisely, based on the Learning-With-Rounding (LWR) prob-
lem [BPR12] and provide a lattice-based zero-knowledge PRF argument.

Code-based cryptography enables the construction of cryptographic primitives that
are believed to be secure against an adversary who has at his disposal a quantum
computer. More precisely, code-based cryptographic primitives are based on assump-
tions related to the hardness of the Syndrome Decoding (SD) problem [BMv78], that
has been proved to be NP-hard. Furthermore, except of their post-quantum nature,
code-based cryptographic primitives offer significant advantages due to their signific-
ant algorithmic efficiency, offering several orders of complexity better than traditional
cryptographic schemes.

In this paper, we focus on the construction of code-based cryptographic fundamental
primitives, particularly on code-based pseudo-random generators/functions, as well as
on code-based interactive zero-knowledge proof systems. We firstly introduce a code-
based PRG and subsequently, we provide a direct construction of a code-based PRF.
Finally, we provide a zero-knowledge protocol for the correct evaluation of the proposed
code-based PRF and evaluate the protocol’s communication cost.

Syndrome Decoding (SD). In this paper, we base our post-quantum cryptosystems
on the hardness of the Syndrome Decoding (SD) problem [BMv78], which is a com-
monly used assumption in code-based cryptography. Recall that the SD problem with
parameters n, r, ω is stated as follows: given a uniformly random matrix H ∈ Fr×n2

and a uniformly random syndrome y ∈ Fr2, find a vector (word) x ∈ Fn2 with Hamming
weight ω, such that H · x⊺ = y⊺. Berlekamp, McEliece and Tilborg [BMv78] proved
that the SD problem is NP-complete, which implies that there is no polynomial-time
algorithm for solving the SD problem in the worst case; however, many instances of
the SD problem can be efficiently solved in the average case. Given existing results on
the computing complexity for solving the SD problem (as reviewed by Chabaud and
Stern [Cha95, Ste89]) it is the hardest to solve, when the weights of the words (i.e.,
x ∈ Fn2) are in the neighbourhood of the Gilbert-Varshamov bound [Gil52, Var57]. More
precisely, we can set the weight of the words for an instance of the SD problem close
to the Gilbert-Varshamov bound, such that the corresponding SD hardness assumption
holds.

Considering the expensive computations required to transform binary strings into
words of constant weight and length, the Regular Syndrome Decoding (RSD) [AFS05],

Intro 87

is a special case of the SD problem, where the words are restricted to regular words.
Regular words are words of given weight w, that have a fixed number of 1’s in each
block of fixed size. The Regular Syndrome Decoding (RSD) problem is widely used in
practical applications due to its high efficiency and convenience in generating words. For
instance, Gaborit, Lauradoux, and Sendriern [GLS07] used regular words to improve
Fischer and Stern’s code-based PRG [FS96]. Let us consider binary words of length n
and let us divide the coordinates in w blocks of n/w positions. A binary regular word
of length n and weight w ((n,w)-regular word) has exactly one non-zero coordinate in
each of these blocks. Notice that there is a reduction from the RSD to the SD problem,
which implies that decoding a regular code cannot be more than about exp(w) easier
than decoding a random code of the same weight.

Code-based Pseudo-random Generators/Functions. Fischer and Stern [FS96]
proposed a simple and efficient construction of a pseudo-random generator (PRG),
based on the intractability assumption for a special case of the SD problem, where
H ∈ F⌊ρn⌋×n2 , x ∈ Fn2 , ω = ⌊δn⌋ for some ρ ∈ [0, 1] and δ ∈ [0, 1/2] such that the Gilbert-
Warshamov bound denoted by Bound(δ) satisfies the following condition: Bound(δ) =
−δ log2 δ− (1− δ) log2(1− δ) < ρ. Thus, yielding a PRG Gρ,δ(x) = H ·x⊺ with domain
Fn2 and range F⌊ρn⌋2 . In order to obtain a PRG that outputs as many bits as we may
want, Fischer and Stern [FS96] provided an iterative generator, which after computing
y = H ·x⊺, separates y as y = y1∥y2, where y1 denotes the first log2

(
n
δn

)
bits of y and

y2 denotes the remaining bits. It outputs y2 and uses y1 as a new seed to compute
Gρ,δ. We should note, that when performing this iteration, it is indispensable to have
an efficient algorithm that computes a word with length n and weight ω = ⌊δn⌋ from a
word of exactly log2

(
n
ω

)
bits.

A pseudo-random function (PRF) is a function fk with the property that no poly-
nomial time attacker, when given oracle access to fk, can distinguish fk from a truly
random function. Goldreich, Goldwasser, and Micali [GGM86] have shown how to
generically construct a PRF from any length-doubling PRG (hence from any one-way
function), known as the GGM paradigm, which requires n sequential invocations of the
generator when operating on n-bit inputs. By plugging Fischer and Stern’s code-based
iterative PRG [FS96] into the sequential GGM paradigm [GGM86], we are able to obtain
a code-based PRF. However, the PRF generated with this method is maximally sequen-
tial and very inefficient, since Fischer-Stern’s PRG [FS96] uses a quadratic algorithm
to transform binary strings of length log2

(
n
ω

)
into words with length n and weight ω,

while this algorithm has to be executed whenever the PRG evaluation is invoked in the
GGM paradigm; thus, considerably slowing down the whole process. This motivates
us to explore specialized constructions of PRFs under code-based assumptions that are
much more efficient, than the previously described naive solution.

Zero-knowledge Proofs for the Correct computation of Code-based PRFs.
Employing a PRF as a random oracle is limited to the setting where the “key owner”,
i.e. the party that evaluates the PRF, should be fully trusted. Motivated by the fact
that the key should remain private in this setting, we wish to establish a method that
allows the owner of the key to prove to a verifier that the given value y is indeed the
correct evaluation on an input point x, without revealing the key. Zero-knowledge (ZK)
proof systems are very useful in numerous protocols, where a user has to prove know-
ledge of some secret information (e.g., his identity), without revealing this information.
Constructing a ZK protocol for the correct evaluation of a code-based PRF is quite
challenging. There have been proposed ZK identification schemes [Ste96] based on the
hardness of the SD problem and its variants [CVEYA11, AGS11], as well as identity-
based identification schemes [CGG07, EYACM11]. There have also been proposed ZK
proofs of plaintext knowledge based on the McEliece and the Niederreiter cryptosys-

88 Paper D - Code-Based Zero Knowledge PRF Arguments

tems [HMT13], as well as a ZK protocol in order to demonstrate that a given signature
is generated by a certain certified user of a group, who honestly encrypts its identifying
information [ELL+15]. Yet, we are not aware of any ZK protocol that can be employed
to prove the correct evaluation of a code-based PRF.

Our Contribution. In this paper, we give a direct construction of PRF families based
on coding theory, which is provably secure under code-based assumptions. More pre-
cisely, we take advantage of regular words, which can be very efficiently generated, and
we build a new PRG by running two Fischer-Stern PRGs in parallel. Thus, avoiding the
iteration needed in the Fischer-Stern PRG in order to output a bit string with doubled
length. In this way, we obtain an efficient construction of PRF families from the regular
syndrome decoding (RSD) problem [AFS05].

Secondly, we provide a zero-knowledge protocol for the correct evaluation of our
code-based PRF, which allows a prover to convince a verifier that a given output y
is indeed correctly computed from the code-based PRF with a secret key k held by
the prover on the input x. Such ZK protocols may be very useful in the context of
oblivious PRF evaluations, which require the party who holds a PRF key to convince
the other party that the key was correctly used in oblivious computations (e.g., e-cash,
unique digital signatures, non-interactive lottery). It is worth noting that, to the best
of our knowledge, prior to our work there were few papers considering PRGs based on
syndrome decoding [FS96, GLS07, MHC12] or other code-based assumptions [YS16],
while no paper considers PRFs based on the SD assumption, let alone considering the
problem of proving the correct evaluation of a code-based PRF. We believe that our
results would certainly help to bring more interest into code-based cryptography and
enhance its important roles in the post-quantum cryptography era.

Overview of Our Techniques. Let us consider an (n,w)-regular word of length n
and weight w. We divide the coordinates in w blocks of n/w positions, and a (n,w)-
regular word has exactly one non-zero coordinate in each of these blocks. If n and w
are chosen such that n/w = 2b, then there is a mapping ϕn,w from Fwb2 to the (n,w)-
regular words in Fn2 .

Let H0,H1 ∈ Fr×n2 where r = w · b and n = w · 2b and f : Fr2 → F2r
2 as:

f(k) =

(
H0

H1

)
· ϕ(k)⊺ =

(
H0 · ϕ(k)⊺
H1 · ϕ(k)⊺

)
= (y0,y1)

⊺

For an input bit string x ∈ Ft2 and by applying the GGM paradigm, we can therefore
define a code-based PRF as follows PRF : Fr2 × Ft2 → Fr2, where:

PRFk(x) = PRFk

(
(x1, · · · , xt)

)
= fxt(fxt−1(· · · (fx1(k)) · · ·).

The pseudo-randomness of our code-based PRF could be reduced to the hardness of
the underlying regular syndrome decoding (RSD) problem and the unpredictability of
the Goldreich-Levin hardcore bit, similarly to [MHC12].

Let us now explain the core idea of how we may build a zero-knowledge protocol
for the correct evaluation of our proposed code-based PRF, which allows a prover to
convince a verifier that a given output y is correctly computed from the PRF using
a secret key k on input x, namely y = fxt(fxt−1(· · · (fx1(k)) · · ·). Without loss of
generality, let us consider the case for input length of t = 2. Given x = (x1, x2),
according to our PRF construction, it holds:(

Hx1 0
0 Hx2

)(
ϕ(k)⊺

ϕ(fx1(k))
⊺

)
=

(
fx1(k)

⊺

fx2(fx1(k))
⊺

)
If we reveal all the intermediate results, i.e., the value y1 = fx1(k) which is exactly
the seed used to compute the next GGM iteration i.e., the value y = y2 = fx2(y

1),

Intro 89

then it is possible for a malicious verifier to compute the PRF on different inputs
x′ = (x1, 1 − x2) (without knowing the secret key k), which subsequently could be
used to break the pseudo-randomness of the PRF. Therefore, we have to “hide” the
intermediate evaluations while proving the correctness of the PRF evaluation. This
goal is accomplished by introducing a specific map ϕ−1 that can be used to hide all the
intermediate evaluation results while maintaining the Stern’s protocol format. Formally,
we obtain: (

Hx1 ϕ−1

0 Hx2

)
·
(
ϕ(k)⊺

ϕ(y1)
⊺

)
=

(
0
y⊺

)
By embedding the above technique into Stern’s ZK protocol framework [FS96],

we obtain an interactive ZK argument system, in which, given the input and output
values x,y,the prover is able to prove that y = PRFk(x) is indeed the evaluation of
fxt(fxt−1(· · · (fx1(k)) · · ·). The protocol is repeated many times to achieve negligible
soundness error.

Related Work. Libert et al. [LLNW17] have investigated the problem of correctly
evaluating arguments for lattice-based pseudo-random functions w.r.t. committed keys
and inputs, using (interactive) zero-knowledge proofs; this is achieved by providing an
abstraction of Stern’s protocol [Ste96] based on lattices. Brunetta et al. [BLM18] further
investigated the possibility of using Libert et al.’s results in order to construct more
advanced primitives such as simulatable verifiable random functions (sVRF). However
the following question is left open:

“Is it possible to achieve a ZK PRF argument based on other (non lattice-based)
post-quantum assumptions?”

Motivated and inspired by these works, we show that it is indeed possible to con-
struct PRF families based on coding theory assumptions and that it is possible to use
the original Stern’s protocol to achieve the ZK argument.

Goldreich-Goldwasser-Micali Construction. In 1986, Goldreich, Goldwasser and
Micali [GGM86] proposed a generic transformation from any PRGs that doubles the
input length, into a family of PRFs. This elegant construction is the main core of our
PRF and the reason of our main interest in code-based PRGs.

Code-based PRGs and Stream Ciphers. In 1996, Fischer-Stern [FS96] defined a
simple PRG based on the syndrome decoding (SD) problem. A decade later, Gaborit et
al. published a code-based stream cipher called SYND [GLS07], which is an improve-
ment of Fischer-Stern’s PRG, revisited as a stream-cipher. Meziani et al. proposed
2SC [MCEYA11], a code-based sponge-function stream cipher. Shortly after, Meziani
et al. improved the SYND cipher and defined X-SYND [MHC12], which is a stream-
cipher based on the regular syndrome decoding (RSD) problem and of which we get
inspiration for our constructions.

Stern’s Protocol. In 1996, Stern [Ste96] published a code-based identification pro-
tocol with a zero-knowledge property. Different improved versions are defined by
Aguilar et al. [AGS11] or Cayrel et al. [CVEYA11] in order to reduce the soundness
error. In our constructions, we have employed the original zero-knowledge identifica-
tion protocol proposed by Stern [Ste96] , given the simplicity of the construction and
its generality.

Paper organisation. In Section 2, the paper notation and the minimal coding-theory
background is reported. In Section 3, we present our code-based PRG construction and
by applying the GGM transformation, we obtain our code-based PRF. In Section 4, we

90 Paper D - Code-Based Zero Knowledge PRF Arguments

describe our PRF proof argument that is compatible with the Stern’s protocol state-
ments and, by applying Stern’s protocol, we achieve a code-based ZK PRF argument.
In Section 5, we describe an application scenario for our protocol and we discuss the
protocol’s communication cost. Finally, in Section 6, we summarize our results and
point out to possible future directions.

2 Preliminaries

This section provides the minimal coding theory definitions needed and the notation
used in the paper. We will recall some coding hard problems and we will conclude the
section by reporting Stern’s zero-knowledge identification protocol [Ste96].

Let N be the set of positive integers and let the uniform sampling of x in a set X
defined as x←RX. Let us denote with |x| the length of the bit-representation of x. We
denote with I2Bb(n) the map that takes an integer value n and outputs the b-bit binary
representation x ∈ Fb2. We denote with B2I(x) the map that takes a binary string x
and outputs the corresponding integer value n.

A linear code C of an n-dimensional vector space over a finite field Fq is a k dimen-
sional subspace where q is a prime power, k and n are integers and 0 < k < n. The
elements y ∈ Fnq are called words and, if they are part of the code, i.e. y ∈ C, then,
they are called codewords. The weight of a word x is denoted as wt(x) and it counts
the number of non-zero components of the word x. A code C can be represented by a
generator matrix G ∈ Fk×nq as C = {x ·G | x ∈ Fkq}, where k is the number of rows and
n the number of columns and the multiplication · is the standard matrix multiplication.

Given the vector subspace description of the code C, the dual-code C⊥ is generated
by a parity check matrix H ∈ F(n−k)×n

q . For the matrix H, it holds C = {x ∈ Fnq |
H · x⊺ = 0}. Throughout the paper, we will consider only binary codes, i.e. q = 2, and
therefore, we use ⊕ to represent the bit-wise XOR operation.

Let us consider the integers n, k, r ∈ N and the parity check matrix H ∈ Fr×n2 of
the code C of dimension k over Fn2 , in which we consider r = n− k.

Assumption 3 (Binary Syndrome Decoding (SD)). Given a binary matrix H ∈ Fr×n2 ,
a binary vector y ∈ Fr2 and an integer w > 0, find a word x ∈ Fn2 such that wt(x) = w
and H · x⊺ = y.

The SD problem is known to be NP-complete [BMv78]. We are interested in a
simplified version of the SD problem in which the word x is regular, i.e. for x with
weight w, it can be split into w equal-blocks of length n

w
and each of them has a single

non-zero entry.

Assumption 4 (Regular Syndrome Decoding (RSD(n, r, w))). Given a binary matrix
H ∈ Fr×n2 , a binary vector y ∈ Fr2 and an integer w > 0, find a regular word x ∈ Fn2
such that wt(x) = w and H · x⊺ = y.

Augot et al. [AFS05] prove the NP-completeness of the RSD problem and we will
base the security of our constructions on this specific problem.

Stern’s protocol [Ste96] is a zero-knowledge sigma-protocol that describes the lan-
guage L defined as the elements (M,y) ∈ Fr×n2 × Fr2 of which there exists a witness
s ∈ Fn2 , such that wt(s) = w and M · s = y. Stern’s protocol requires a commitment
scheme Com and allows a prover P to prove to a verifier V the knowledge of the witness
vector s given the statement (M,y).

Theorem 4 (Stern’s protocol). From the original paper [Ste96], Stern’s protocol, as
reported in Figure 27, is correct, has soundness probability of 2

3
and it is zero-knowledge.

3. CODE-BASED PRF 91

Statement: (M,y) ∈ Fr×n2 × Fr2 and witness s ∈ Fn2 with wt(s) = w and M · s = y.

1. Commitment: P samples r←RF2
n, a permutation π of the set {1, ... , n} and

random values ρ0, ρ1, ρ2 for the commitment scheme Com. The result of applying
the permutation π to a vector r = (r1, ... , rn) is π(r) = (rπ(1), ... , rπ(n)).
The prover P sends the following commitments to the verifier V:

C0 = Com((π,M · r⊺) ; ρ0) C1 = Com(π(r) ; ρ1) C2 = Com(π(r⊕ s) ; ρ2)

2. Challenge: V sends the challenge c ∈ {0, 1, 2} to P
3. Response: P sends to V, based on the challenge c, the reply: if c = 0, (π(r), π(s))

and ρ1, ρ2; if c = 1, (r⊕ s, π) and ρ0, ρ2; and if c = 2, (r, π) and ρ0, ρ1.

Verification: given the challenge c and the response (r̃, π̃), V verifies:
if c = 0: given ρ1, ρ2, V checks wt(π̃) ?

= w, Com(r̃ ; ρ1)
?
= C1 and Com(r̃⊕ π̃ ; ρ2)

?
=

C2

if c = 1: given ρ0, ρ2, V checks Com((π̃,M·r̃⊺⊕y⊺; ρ0)
?
= C0 and Com(π̃(r̃); ρ2)

?
= C2

if c = 2: given ρ0, ρ1, V checks Com((π̃,M · r̃⊺ ; ρ0)
?
= C0 and Com(π̃(r̃) ; ρ1)

?
= C1

In each case, V outputs 1 if and only if all the checks are correct.

Figure 27: Stern’s protocol description.

Let π a permutation of the set {1, ... , n} if we assume that |π| > n, and |Com| is the
commitment length, then the communication cost of the protocol is:

CostStern(n, r) ≤
(

3 · |Com|︸ ︷︷ ︸
Commitment

+

Challenge︷︸︸︷
2 +n+ |π|+ |ρ0|+ max

i∈{1,2}
|ρi|︸ ︷︷ ︸

Response

)
bits

3 Code-Based PRF

In this section, inspired by Gaborit’s [GLS07] and Meziani’s [MHC12] code-based stream
ciphers, we define our own simple PRG G that has double-length pseudorandom output.
Furthermore, after proving that f is indeed a PRG, we present our code-based PRF ob-
tained by employing the Goldreich-Goldwasser-Micali (GGM) transformation [GGM86].

Let w, b ∈ N positive integers chosen such that n = 2bw, r = w · b, and the related
RSD problem RSD(n, r, w) of Assumption 4 is hard. Consider the binary words s ∈ Fn2
of length n and composed by w blocks of length 2b, i.e. s =

(
s1, ... , sw

)
such that every

block sj has weigth wt(sj) = 1. We are interested in maps that have binary regular
words as image.

Let us define the map ϕ as the map that takes a bit-string y ∈ Fr2 and outputs a
regular word s ∈ Fn2 such that wt(s) = w and that is computed as follows.

Firstly, the binary string y is divided into w blocks as y = (y1, ... ,yw) of which each
block yi is a binary string with length b. Then, for every j ∈ {1, ... , t}, we compute the
integer value nj represented by the block yj and denote it as B2I(yj) = nj . In this way,
we transform the vector (y1, ... ,yw) into a vector of integers (n1, · · · , nw), where every
nj is contained in the interval {0, ... , 2b − 1}. Since there are 2b possible values for nj ,
we bijectively identify every integer with a canonical vector of length 2b. This bijection
takes as input an integer nj and outputs the canonical vector enj+1 ∈ F2b

2 , which is the
binary vector of length 2b, with a single 1 in position nj + 1.

92 Paper D - Code-Based Zero Knowledge PRF Arguments

Finally, we transform the integer vector and obtain a vector of canonical vectors
(en1+1, · · · , enw+1) that are concatenated and output by ϕ. In summary, the map ϕ is
computed as:

ϕ
(
y
)
= ϕ

(
(y1, ... ,yw)

)
=
(
eB2I(y1)+1∥ · · · ∥eB2I(yw)+1

)
= s

It is trivial to observe that s is a regular word of length n and weigth w since s is
the concatenation of w canonical vectors of length 2b and the weight wt(s) is equivalent
to the sum of the weight of the canonical vectors, which is w. It is important to note,
that ϕ can be efficiently computed and therefore, we assume that the computational
cost is constant.

For example, the vector y =
(
01∥11∥00

)
would be transformed into the regular word

ϕ(y) = s =
(
e2∥e4∥e1

)
=
(
0100∥0001∥1000

)
.

After defining the map ϕ, we are interested in developing a pseudorandom gen-
erator (PRG) based on the RSD assumption (see Assumption 4), inspired by Mezi-
ani’s [MHC12] stream-cipher design. Let us first report both definitions.

Definition 20 (Pseudorandom Generator (PRG) [KL08]). Given the positive integers
ℓin, ℓout ∈ N with ℓout > ℓin, let G : {0, 1}ℓin → {0, 1}ℓout be a deterministic function.
We say that G is a pseudorandom generator if the following two distributions are
computationally indistinguishable:

• Sample a random seed s ∈ {0, 1}ℓin and output G(s).

• Sample a random string r ∈ {0, 1}ℓout and output r.

A stream cipher is an encryption scheme used in contexts where the messages are
streams, i.e. the messages do not have a fixed-length a priori, and therefore a key-
“stream” has to be generated and used. In order to do so, stream-ciphers are usually
designed with an initialization algorithm that takes a key and initialize the cipher into
an internal state. Consecutively, the cipher has an output algorithm that outputs
a fixed-length key-stream based on the internal state and an update algorithm that
“evolves” the internal state.

As described also by Fischer-Stern [FS96], it is natural to build stream-ciphers from
PRGs: the stream cipher key is indeed the initial PRG’s seed s. Then, we can compute
G(s) and use the first ℓin bits as the internal state and the remaining ℓout−ℓin as the key-
stream output. By iterating the PRG computation using the always different internal
state, we obtain an arbitrary long key-stream.

Given the strong connection between stream ciphers and PRGs, we focus on Meziani
et al.’s [MHC12] code-based stream cipher, depicted in Figure 28.

Definition 21 (X-SYND Stream Cipher [MHC12]). Let w, b ∈ N be positive integers
and define n = w2b, r = wb. Let A0,A1←RFr×n2 be random binary matrices. Define
the X-SYND stream cipher as:

• Init(IV, s): given an initialization vector IV and a seed s both of length r
2
, let

z⊺ = A0 · ϕ
(
(s∥IV)

)⊺ ⊕ (s∥IV)⊺ and set as initial state st0⊺ = A1 · ϕ(z)⊺ ⊕ z⊺;

• Upd(sti): given the internal state sti, update the state sti+1
⊺ = A0 · ϕ(sti)⊺;

• Out(sti): given the state sti, output the key-stream ski+1
⊺ = A1 · ϕ(sti)⊺

Similarly to X-SYND, let A0,A1 ∈ Fr×n2 , where r = w · b and n = w · 2b and the
map ϕ : Fr2 → Fn2 as before. Let us define the function f : Fr2 → F2r

2 as:

f(k) =

(
A0

A1

)
· ϕ(k)⊺ =

(
A0 · ϕ(k)⊺
A1 · ϕ(k)⊺

)
=

(
y0

y1

)
(13)

Code-Based PRF 93

(s∥IV)

Init(IV, s)

Upd z Out sti
Upd

Out ki+1

Figure 28: A high-level representation of the X-SYND stream cipher.

It has to be observed that f is indeed Meziani et al.’s [MHC12] computation of the
initialization and update algorithms, i.e. f(sti)⊺ = (Upd(sti)⊺∥Out(sti)⊺).

This observation allows us to reuse Meziani et al. X-SYND proofs and easily prove
that f is indeed a PRG.

Proposition 6. f is a PRG that reduce to a RSD(n, 2r, w) problem (Assum. 4).

Proof. We sketch the main idea of the proof in two parts, that follow the same reasoning
as Meziani et al.’s [MHC12] X-SYND’s security proof parts.

We start by observing that since ϕ is a bijection between vectors in Fr2 and regular
words in Fn2 with weight w, it is obvious that knowing a regular word solution x is
equivalent of knowing the vector k such that ϕ(k) = x.

Given this observation, in fact, we have an RSD(n, 2r, w) instance since:

f(k)⊺ =

(
A0

A1

)
· ϕ(k)⊺ =

(
A0

A1

)
· x⊺ ∈ RSD(n, 2r, w)

The second step is pseudorandomness and to prove it, we use the fact that Meziani et
al. prove in Theorem 2 [MHC12], using Goldreich-Levin hard-core bit theorem [GL89],
that the map (Upd,Out) is a PRG. Given the observation that (Upd,Out) is exactly f ,
we can conclude that f is indeed a PRG.

From PRG to PRF. Finally, we use our PRG f and construct a PRF.
In order to do so, we use the Goldreich-Goldwasser-Micali construction [GGM86]. For
the sake of clarity, let us report the PRF definition and the GGM construction.

Definition 22 (Pseudorandom Function (PRF)). Let S be a distribution over {0, 1}ℓ
and Fs : {0, 1}m → {0, 1}n be a family of functions indexed by strings s in the support
of S.

We say {Fs} is a pseudorandom function family if for every p.p.t. adversary D,
there exists a negligible function ϵ such that:

|Pr[DFs(·) = 1]− Pr[DR(·) = 1]| ≤ ϵ,

where s is distributed according to S, and R is a function sampled uniformly at random
from the set of all functions from {0, 1}m to {0, 1}n.

Definition 23 (GGM Construction [GGM86]). Let G : {0, 1}ℓ → {0, 1}2ℓ be a length-
doubling PRG and s ∈ {0, 1}ℓ be a seed for G. Write G(s) = (G0(s), G1(s)) with G0,G1 :
{0, 1}ℓ → {0, 1}ℓ. Then, on input x ∈ {0, 1}m, we define the GGM pseudorandom
function Fs : {0, 1}m → {0, 1}n as

Fs
(
x
)
= Fs

(
(x1, ... , xℓ)

)
= Gxℓ(Gxℓ−1(· · · (Gx1(s)) · · ·) (14)

Theorem 5. If G : {0, 1}ℓ → {0, 1}2ℓ is a PRG, then {Fs} is a PRF family.

94 Paper D - Code-Based Zero Knowledge PRF Arguments

Having fixed a positive non-null integer t ∈ N, let us define our PRF PRF : Fr2 ×
Ft2 → Fr2 as the PRF obtained by transforming our PRG f of Eq. (13) with the GGM
construction of Eq. (14). For readability, we will always denote the key in subscript,
i.e. PRF(k,x) = PRFk(x). Formally we have,

PRFk(x) = PRFk

(
(x1, · · · , xt)

)
= fxt

(
fxt−1

(
· · ·
(
fx1(k)

))
· · ·
)

(15)

Corollary 1. By Theorem 5, PRF is a code-based PRF.

4 Code-Based Zero Knowledge PRF Argument

In this section, we describe how our PRF construction can be adapted to be compatible
with Stern’s protocol [Ste96] and thus, achieve a Zero-Knowledge (ZK) PRF argument,
i.e. can be employed to prove the correctness of a PRF evaluation. We will start from
a naïve description of a Stern-like statement and explain a specific security-flow that
seems not to be easily solvable. To solve the problem, we define the map ψ that will
act as the inverse map ϕ−1 and modify accordingly the statement in order to obtain a
secure Stern-like statement

(
(M,y), s

)
.

Briefly, Stern’s protocol allows a prover P to prove the knowledge of a witness s
with weight w to a verifier V, that holds a public statement

(
M,y

)
. The statement

and the witness are related to the equation M · s⊺ = y⊺.
At a first glance, we can observe that our PRG G is already defined in a Stern-

like format but iterating the PRG requires the application of the map ϕ, which has no
possible linear representation. Let us consider the GGM iterative structure and let yi be
the i-th partial evaluation of the PRF, while xi+1 be the next “branching” in the GGM
construction. The (i+1)-th partial evaluation is computed as Ax(i+1)

·ϕ(yi)⊺ = y(i+1)⊺.
Since ϕ has no-linear representation, it is indeed impossible to re-write the equation as
a single matrix M ∈ Fr×n2 that multiplies only the secret initial vector ϕ(k).

It is important to note that, in order to use Stern’s protocol, the witness is required
to have a specific weight w and therefore we will consider as witness the regular word
ϕ(k). This observation allows us to rewrite the PRF evaluation as a system of equations
that describe all the singular partial evaluations and can be directly used to run Stern’s
protocol. Let k = y0 and x = (x1, ... , xt) and yt = PRF(k,x). Then, it formally holds
that:

Ax1 · ϕ(y0)

⊺
= y1⊺

Ax2 · ϕ(y1)
⊺
= y2⊺

...

Axt · ϕ(yt−1)
⊺
= yt

⊺

⇐⇒

Ax1 0
0 Ax2 0

.
0 Axt

 ·

ϕ(y0)
⊺

ϕ(y1)
⊺

...
ϕ(yt−1)

⊺

 =

y1⊺

y2⊺

...
yt

⊺

(16)

Unfortunately, this representation has a security-flaw that allows a malicious ad-
versary A to compute the PRF on different inputs x′ without requiring the knowledge
of k. This flaw is not captured by the GGM transformation and Stern’s protocol se-
curity model, since the problem is related to the “composition” of the construction and
the unusual behaviour observed when naïvely merging the security models. We call this
composed-protocol as prove-on-demand protocol, in which we can either solely com-
pute the PRF and, in a different moment in time, request to execute the ZK arguments.
Further discussion is presented in Section 5.

Code-Based Zero Knowledge PRF Argument 95

In a nutshell, let A be an adversary whose goal is to distinguish between our code-
based PRF PRF and a random function ζ, i.e., break the pseudo/randomness property
and related security model. Whenever the adversary queries a value x, A can either ask
to obtain just the value PRF(k,x) or to obtain the transcript of the execution of Stern’s
protocol, which contains PRF(k,x) too. It is trivial to notice that the challenger can
reply to the second query type by applying the simulatable property of ZK protocols,
i.e., providing a simulated transcript that correctly verifies Equation (16) and obtains
a random value by evaluating ζ.

On the other hand, this naïve ZK proof gives access toA to all the partial evaluations
of the GGM transformation. A can take, w.l.o.g., the partial evaluation yt−1 and
correctly compute A1−xt · ϕ(yt−1)

⊺
= PRF

(
k,x′

)
, which is a valid PRF evaluation

of the input x′ with a different t-th component. With this knowledge, A can query
the challenger on x′ and just verify if the answer is equivalent to its computation or
not, therefore distinguishing between PRF and ζ. Mutatis mutandis, A can personally
compute any input x′ except the ones that have a different first input-bit x1. This is
because A does not hold the pre-computation y0, which is exactly the secret key k.

Similarly, it is possible to find other uncommon attacks that break other security
properties, e.g., the soundness property for Stern’s protocol. The reason of all these
problems is the disclosure of the partial evaluations, that completely break the GGM
transformation Theorem 5 proof. For this reason, our goal is to “hide” the partial
evaluation, while maintaining the simple and elegant representation compliant with
Stern’s protocol statement.

Let us consider the map ψ : Fn2 → Fr2 that takes a regular word w of weight w and
outputs a binary vector of length r. The main design property of ψ is to invert the map
ϕ and to be representable in a linear matrix format.

First of all, let w be a regular word of length n = w · 2b that representa w as the
concatenation of w canonical vectors, i.e. w =

(
en1 | · · · | enw

)
. Let I2Bb be the map

that given an integer j, it outputs, as a row vector, the binary representation in b-bit,
i.e., zeros are added accordingly if necessary.

Let us consider the binary matrix ψ as:

ψ =

(I2Bb(0)⊺∥ ... ∥I2Bb (2b − 1
)⊺)
∥ · · · ∥

(
I2Bb(0)

⊺∥ ... ∥I2Bb
(
2b − 1

)⊺)
︸ ︷︷ ︸

w times

 (17)

By notation abuse, let the evaluation of the map ψ be the matrix multiplication
with the matrix ψ in Equation (17). Formally,

ψ(w) = ψ ·w⊺ = ψ ·
(
en1+1 | · · · | enw+1

)⊺
=
(
I2Bb(n1)∥ ... ∥I2Bb(nt)

)⊺
Lemma 2. For all y ∈ Fr2, it holds (ψ ◦ ϕ)(y) = y, i.e., ψ is the inverse of ϕ.

Proof. Ad oculos, let y = (y1∥ ... ∥yw).(
ψ ◦ ϕ

)
(y) = ψ

((
eB2I(y1)+1∥ ... ∥eB2I(yw)+1

))
=
((

I2Bb ◦ B2I
)
(y1)∥ ... ∥

(
I2Bb ◦ B2I

)
(yw)

)
= (y1∥ ... ∥yw) = y

Given the invertibility property, we are now able to further modify and fix the naïve
approach presented in Eq. (16). For every j ∈ {1, ... , (t−1)}, let us rewrite the equation

96 Paper D - Code-Based Zero Knowledge PRF Arguments

by moving all the addends to the left-hand side. Formally,

Axi · ϕ(y
i−1)

⊺
= yi

⊺ ⇐⇒ Axi · ϕ(y
i−1)

⊺ ⊕ yi
⊺
= 0

⇐⇒ Axi · ϕ(y
i−1)

⊺ ⊕
(
ψ ◦ ϕ

)⊺
(yi) = 0

⇐⇒ Axi · ϕ(y
i−1)

⊺ ⊕ ψ · ϕ(yi)⊺ = 0 (18)

By rewriting Eq. (18) in Eq. (16), define M̂ ∈ Ftr×tn2 and ŝ ∈ Ftn2 , ŷ ∈ Ftr2 as:

M̂ · ŝ :=

Ax1 ψ

.
Axt−1 ψ

Axt

 ·

ϕ(y0)
⊺

...
ϕ(yt−2)

⊺

ϕ(yt−1)
⊺

 =

0
...
0
yt

⊺

 =: ŷ (19)

Proposition 7. Let M̂, ŝ, ŷ as defined in Eq. (19). The related Stern language,

L̂ =
{(

M̂, ŷ
) ∣∣∣ ∃ ŝ : wt(ŝ) = wt ∧ M̂ · ŝ = ŷ

}
is equivalent to the PRF evaluation language for PRF of Eq. (15), i.e.,

LPRF = {(x,y) | ∃k : PRF(k,x) = y}

Proof. Since the global parameters n, r, w are known, the matrix ψ is defined and it
is trivial to observe that M̂ can be reconstructed with the knowledge of the matrices
A0,A1 and x. Furthermore, since t− 1 components of ŷ are zero, only yt is needed to
correctly reconstruct the language statement’s vector. To this point, we can rewrite L̂
as:

L̂ =
{(

(A0,A1,x) ,y
t) ∣∣∣ ∃ ŝ : wt(ŝ) = wt ∧ M̂ · ŝ = ŷ

}
Since the PRF is defined by the matrices A0,A1, yt = PRF(k,x) and the matrix

multiplication represents the GGM iterated PRF computations, we have

L̂ = L′PRF = {(x,y) | ∃ ŝ : wt(ŝ) = wt ∧ PRF(k,x) = y}

and we are left to prove that possessing the PRF secret key k ∈ Fr2 is equivalent
to knowing all the regular-words and partial evaluations yj ∈ Fn2 used in the GGM
transformation, for all indexes j ∈ {0, ... , (t− 1)}.

Given that the maps ϕ and ψ are, together, a bijection between Fr2 and the regular
word in Fn2 with weight w, it holds that it is irrelevant which representation is known.
Trivially, the knowledge of k = y0 allows the computation of all the other partial
evaluations yj for j ∈ {1, ... , (t − 1)} and therefore it holds LPRF ⊆ L′PRF = L̂. For the
same reasons, it is possible to “forget” the partial evaluation and have LPRF ⊇ L′PRF. In
conclusion, it holds that L̂ = LPRF.

Corollary 2. By Stern protocol’s Theorem 4 and Proposition 7, executing Stern’s pro-
tocol on

(
M̂, ŝ, ŷ

)
as defined in Eq. (19), produces a Zero-Knowledge PRF argument

protocol based on the code-based PRF PRF of Section 3.

5. THEORETICAL ANALYSIS FOR IMPLEMENTATION COST 97

5 Theoretical Analysis for Implementation Cost

In this section, we provide an application scenario in which our protocol could be
employed and we discuss the protocol’s communication costs.

Let us consider an employee and an employer that are willing to sign an agreement
document that guarantees special treatment for the employee. Since they do not fully
trust each other, they agree on a shared document. To bind the reached agreement,
they ask a notary N to witness the signing phase, of both the employee and employer,
and publicly commit, by signing, the content of the agreed-document. We assume that
the signed and agreed document is made public. In this way, a notary is fully liable
and, at any moment, anyone can take the signed document and let the notary testify on
the agreement’s trustworthiness. This scenario is quite common, whenever we consider
physical verification of identities or signatures while, the first number-theoretic example
is given by Adleman [Adl83] in 1983.

Let us now consider the case in which the notary N accepts to be liable in a limited
way. More precisely, a verifier V can interact with N and ask to prove the agreed-
document’s correctness but V cannot use the interaction-transcript-of-the-protocol to
further prove the document’s correctness to other people.

This can be seen as the whistle-blower’s notary problem and is depicted in Figure 29.
Let us explain the scenario in detail, while employing our ZK protocol.

The clients prepare a document x containing all the info that they are willing to
publish. The notary, in possess of a secret key k, will verify the document’s validity and
he/she will publicly commit to the document with y = PRFk(x). A verifier V will be
able to verify the correctness of (x,y) by running the ZK PRF argument protocol with
the notary N . The zero-knowledge property imposes to the the notary that he must
be collaborative and guarantees that V cannot use the proof-transcript and make N
liable. This counter-intuitive second point is better understood when we change our
point of view: N can choose whom to prove to and therefore he/she can interact with
a trustworthy judge that is interested in the correctness of the document, while N can
refuse to interact with strangers and avoid repercussions of any kind.

BP

Clients Contract x

Notary k
Published
Contracts

Verifier

???

ZK
Protocol

Figure 29: The whistle-blower notary problem.

In this way, “committing” and “proving” are done in different times. The reasons
of this choice find roots in the extremely different cost between “computing” and “com-
municating” a statement or a proof. For this reason, we classify applications, such
as the one described above, that are computationally-fast but communication-costly
as prove-on-demand protocols, in which the protocol’s communication cost is low
until the proof is requested.

Let us now describe why our protocol is a prove-on-demand protocol. We upper-
bound our ZK protocol communication cost w.r.t. implementation principles discussed

98 Paper D - Code-Based Zero Knowledge PRF Arguments

by Stern [Ste96] and Meziani et al. [MHC12].
First of all, we overestimate the length of a permutation π of the set {1, ... , n} as

|π| = n log2(n), which is the bit-representation of the permutation’s image w.r.t. a
fixed order, e.g., π =

(
I2Bn(π(1))∥ ... ∥I2Bn(π(n))

)
. By employing the random hashing

technique, as denoted by Stern, we may use a hash function H and commit to a message
m by sampling some randomness ρ of the same length |m| and commit by computing
the hash value of

(
ρ∥ρ⊕m

)
. To verify the decommitment, it is necessary to hold both

ρ and m. In this way, the commitment’s length is exactly the hash digest’s length,
denoted as |H|.

Given w, b ∈ N, the number d of Stern’s protocol executions, and the PRF input
space dimension t, the communication cost for our ZK PRF argument is:

Cost(w, b, t, d) = d · CostStern(tw2
b, twb)

≤ d ·
(
3 |H|+ tw ·

(
2b+1(1 + b+ log2(tw)

)
+ b
)
+ 2
)

bits

From the X-SYND definition [MHC12], in order to get a security level of 80 bits, the
parameters are fixed as w = 32 and b = 8. We can also assume that the hash digest is
|H| = 128 bits. Therefore, if we consider t, d as parameters, we have:

Cost(32, 8, t, d) = d · CostStern(8192t, 256t)

≤ d ·
(
t ·
(
16384 · log2(t) + 229632

)
+ 386

)
bits

With these parameters, we have that our proposed PRF has a space-cost equal to
|A0| + |A0| = 2 · w2b · wb which, in our case, is 0.5 Megabyte. The output space
is 256 bits. Although the matrices used in the computations require significant cost,
our protocol and proposed primitives require only binary operations and thus have an
extremely low communication cost.

It is clear that the communication cost is directly proportional to the soundness
probability we want to achieve, i.e., the probability of a successful adversary, who may
want to impersonate the notary. For example, in order to get a soundness probability
of less than 2−80, we have to execute the protocol at least d ≥ 137 times.
We plot the communication cost of running our ZK PRF argument protocol, depending
on the (t, d) choices in Figure 30.

Regarding the PRF input space, we might consider, as a reasonable dimension, to
be either t = 128 or t = 256, as the output space. In these two cases, the whole com-
munication cost for proving the PRF evaluation would be in the order of approximately
one Gigabyte.

Cost(32, 8, 128, 137) ≃ 719.79MB Cost(32, 8, 256, 137) ≃ 1508.08MB

Given the high-communication cost required, we would highly suggest the employ-
ment of our ZK PRF argument protocol only in prove-on-demand application scenarios
i.e., in applications where proving the PRF argument is not required frequently and
thus, the communication cost, and related time, can be afforded without disrupting
the application’s functionality. We should note though that considering the great effi-
ciency of the required computations, the protocol can be executed in devices with low
computational abilities.

6 Conclusions and Future Work

In this paper, we construct the first zero-knowledge PRF argument based on the regular
syndrome decoding assumption. Our construction starts from defining a PRG f , which

Conclusions and Future Work 99

T

D

20

40

60

80

100

120

50 100 150 200 250

14

16

18

20

22

24

26

28

30

Figure 30: A heatmap plot of log2
(Cost(32,8,t,d)

8

)
in which, for every t and d, we represent

the communication cost in base-2 logarithmic scale. This means that a value of 20
represents 220 bytes, which is 1 Megabyte.

directly reduces to a RSD(n, 2r, w) problem. By applying the GGM transformation we
obtain a code-based PRF. After rewriting the GGM evaluation steps as a single linear
system, we define the map ψ that consequently, allow us to rewrite the PRF evaluation
in a Stern protocol statement. Finally, we obtain our code-based ZK PRF argument
protocol by applying Stern’s protocol.

Providing cryptographic primitives under code-based assumptions is of significant
interest since code-based cryptography provides significant promise to be post-quantum
secure. Furthermore, ZK PRF argument protocol can be employed to construct other
code-based primitives. For instance, Brunetta et al.’s construction [BLM18] would allow
us to define a simulatable verifiable random function, i.e., a cryptographic primitive that
allows to prove non-interactively the correct PRF computation. These advanced prim-
itives can be used to simplify complex multi-party protocols employed in applications
that require sampling a pseudorandom element from a set without allowing any party
to maliciously affect the result, such as e-cash, e-voting and cryptographic lotteries.

As further work, we are interested in improving the proposed protocol’s efficiency.
Some possible directions, we may consider is improving Stern’s protocol communication
cost is by employing Aguilar et al.’s [AGS11] or Cayrel et al.’s [CVEYA11] protocols
that also provide lower soundness error. Another direction is to reduce the PRF’s
fingerprint by using quasi-cycle codes and not random-binary ones.

Acknowledgement. We are grateful to the anonymous reviewers for their insight-
ful comments. This work was partially supported by the Swedish Research Council
(Vetenskapsrådet) through the grant PRECIS (621-2014-4845).

Towards Stronger Functional Signatures

Carlo Brunetta, Bei Liang and Aikaterini Mitrokotsa

Chalmers University of Technology, Gothenburg, Sweden

Manuscript

Paper E - Towards Stronger Functional Signatures 103

Abstract: Functional digital Signatures (FS) schemes introduced by Boyle, Gold-
wasser and Ivan (PKC 2014) provide a method to generate fine-grained digital signa-
tures in which a master key-pair (msk,mvk) is used to generate a signing secret-key
skf for a function f that allows to sign any message m into the message f(m) and sig-
nature σ. The verification algorithm takes the master verification-key mvk and checks
that the signature σ corresponding to f(m) is valid. In this paper, we enhance the
FS primitive by introducing a function public-key pkf that acts as a commitment for
the specific signing key skf . This public-key is used during the verification phase and
guarantees that the message-signature pair is indeed the result generated by employing
the specific key skf in the signature phase, a property not achieved by the original FS
scheme. This enhanced FS scheme is defined as Strong Functional Signatures (SFS) for
which we define the properties of unforgeability as well as the function hiding property.
Finally, we provide an unforgeable, function hiding SFS instance in the random or-
acle model based on Boneh-Lynn-Shacham signature scheme (ASIACRYPT 2001) and
Fiore-Gennaro’s publicly verifiable computation scheme (CCS 2012).

Keywords: Functional Signatures, Verifiable Computation, Function Pri-
vacy

104 Paper E - Towards Stronger Functional Signatures

1 Introduction

Digital signatures, introduced by Diffie and Hellman [DH76], is a valuable cryptographic
primitive that provides important integrity guarantees, i.e., a signed message allows the
receiver to verify that the message was indeed signed by the claimed signer. Functional
digital signatures (FS), introduced by Boyle, Goldwasser and Ivan [BGI14] as a general
extension of classic digital signatures [GMR88], allow generating signatures in a more
fine-grained manner ; thus, being very useful in multiple applications, e.g., scenarios
where the delegation of signing rights has to be considered. Functional digital signatures
require a trusted authority to hold a master secret key. Given a description of a function
f , the authority, using the master secret key, can generate a limited functional signing
key skf associated with the function f . Anyone that has access to the signing key skf
and a message m, can compute f(m) and the corresponding functional signature σ of
f(m).

Let us employ an example related to photo-processing given by Boyle et al. [BGI14]
to explain how FS works. When performing photo-processing, a digital camera is re-
quired to produce signed photos. One may want to allow photo-processing software to
perform minor touch-ups of the photos, such as changing the contrast, but not allow
more significant changes such as merging two photos or cropping a photo. Boyle et al.
argued that FS could be used in such a setting to provide the photo processing software
with a restricted key, which enables it to sign only specific modifications of an original
photo. Let us assume there are three different pictures partitioned into three areas and
coloured in red, blue and yellow but in different order, as represented in Figure 31.

Figure 31: An illustrated example of collisions from different messages and functions in
a functional signature scheme.

The functionality of f1 is to exchange the colour of areas 2 and 3, while f2 is used
to exchange the colour of areas 1 and 3, and f3 to exchange the colour of areas 1 and
2. Using the secret key skf1 to sign the photo ϕ1, we obtain the signed new photo y1.
With the restricted keys skf2 and skf3 , we can obtain two signed photos with the same
picture on it, namely y2 and y3. Using functional signatures, given y1, y2 and y3, the
appreciator (not the one who provides the original picture) only knows they are three
certified photos.

Generally, if we consider two functions f and g and two messages m, m′ such that
f(m) = g(m′) = y, then, given y and the corresponding functional signature σ, FS
cannot be used to certify that the function value y is indeed computed from the queried

1. INTRODUCTION 105

function f and m rather than from g and m′. The latter yields from the function privacy
property of FS [BGI14], namely given y and σ, any adversary is unable to tell which
function f or g was used to compute the value y even when given both functional signing
keys skf and skg.

What if we wish to make the appreciator classify that a signed photo y, is indeed the
outcome of applying an “allowed” function without revealing “which” one?

Our idea to allow an appreciator/verifier to distinguish between the usage of different
secret keys, e.g. skf and skg, we introduce a function public key, i.e. pkf and pkg, that is
just used in the verification phase. The public key pkf can be seen as a commitment for
the specific and related secret key skf allowing to distinguish between the evaluation
and signatures (f(m), σ1) and (g(m′), σ2) even in the case that f(m) = g(m′). This
“key-addition” directly affects the FS function privacy property that changes from “the
verifier cannot retrieve which function was computed” to the stronger concept of “the
verifier cannot retrieve which function was computed despite knowing the related public
key”. We capture this idea into the enhanced definition of Strong Functional Signature
(SFS), an Functional Signature (FS)-like scheme with function public keys that allows
the verification of function evaluations’ signatures and guarantees the correct function
evaluation while maintaining the function hidden.

Example - Computational Authorisation for Cloud Computing our SFS prim-
itive could be used in the example previously described, as well as in more general
applications related to the cloud-assisted setting which are alike to the certification
authorities’ infrastructure but for function application and not only for identity au-
thentication.

As depicted in Fig. 32, let us consider a cloud service T that offers to service pro-
viders Si the possibilities to register their functionalities fi in exchange of guaranteeing
function hiding and the correct authentication whenever a user Uj wants to verify the
authenticity and correctness of the output of such hidden functionalities. In other
words, Si will register the function fi, obtain skfi from T and, at the same time, T will
publish the public key pkf1 with some application label, e.g. it might be published into
an “Authorised” functionality list. Later on, the user Uj requires Si to process their
data, obtains the output y with signature σ and wants to verify that y is indeed correctly
computed by an authorised function. Therefore, Uj obtains the list of authorised public
keys pkfi and verifies that (y, σ) is valid by finding a public key pkf that pass the SFS
validation algorithm. Additionally, Uj is unable to infer the precise function f from the
public key pkf thus the cloud service T guarantees to the service provider S that the
function is kept private.

Observe that the cloud service T has the power to modify the status of the public
keys, e.g. a public key pkg might be completely “revoked” by removing it from all the
public key’s lists.

It is obvious that FS [BGI14, BF14, BMS16] does not have the features of checking
if the outcome is resulted from the authorised functions, neither achieves this concept
of “revocability”. In fact, in FS, since only mvk is required to verify the validity of
(y, σ), it is not possible to check if a specific function was applied to output y, while
our SFS make it possible by providing restricted public keys w.r.t. each function, which
are employed in the verification process.

Moreover, in traditional FS schemes, it is indeed impossible to “revoke” a specific
signing key, since the verification process would always work. However, in our intro-
duced SFS notion, by incorporating the public keys in the verification process, we are
able to revoke the signing capability for a restricted signing key thus allowing the trus-
ted third party that owns the master key pair, to create a more fine-grained control
over the generated function key pairs.

106 Paper E - Towards Stronger Functional Signatures

Service

Provider
Si

Auth.
Unauth.

TCloud
Service

?

User Uj

pkf1

pkf2

pkf3

f?

pkfi

fi

skfi

Com
pu

te
&

Si
gn

Figure 32: Strong functional signatures in the cloud computational authentication scen-
ario.

Our Results our results can be summarised as follows:

• we formally define the notion of SFS with unforgeability and function hiding
properties;

• we provide a variation of Boneh et al.’s BLS signature scheme [BLS04] and a vari-
ation of Fiore and Gennaro’s verifiable computation scheme [FG12]. We prove that
the Fiore and Gennaro’s VC scheme satisfies the Public Verifiable Computation
(PVC) privacy properties;

• based on our variations, we give an instantiation in the random oracle model of
an SFS scheme for the polynomial function family which is adaptively unforgeable
and satisfies the function hiding property.

The starting point of our instantiation of SFS is to use the BLS signature scheme [BLS04]
in combination with the Fiore-Gennaro’s publicly VC scheme [FG12] that is compatible
with the algebraic structure and assumptions of the BLS signatures. We denote with
BLS the variation of the BLS signature and with VC the variation of the Fiore-Gennaro’s
VC scheme, that we propose. The design-trick behind our instantiation is to create a
master key-pair as an algebraic one-way instance and use it as a “transposition” for the
secret key of the schemes, e.g. BLS.Setup(λ)→ (MSK,MPK) is equal to (β, e (g1, g2)

β)
for some β ∈ Zp and whenever we sample a fresh secret value α ∈ Zp in order to
compute the BLS and the VC keys, we just consider the new secret α+ β obtained by
translating α by β. Thus, all the evaluation/secret-keys are computed as if α+β is the
randomness sampled while the verification/public-keys are published as “local keys”,
e.g. we publish e (g1, g2)

α and not e (g1, g2)α+β . In this way, the two variated schemes
become “entangled” thus implying a stricter relation during execution and verification.
In a nutshell, the SFS instantiation combines the two schemes such that the verifiable
computation VC computes the secret function and provide the proof of correct compu-
tation while the signature scheme BLS is used to sign the result and forcedly relate it
to the VC results.

Related Work SFS are inspired by Boyle et al. [BGI14] FS construction and are closely
related to Signatures of Correct Computation (SCC) proposed by Papamanthou, Shi

1. INTRODUCTION 107

and Tamassia [PST13] as well as PVC proposed by Parno et al. [PRV12] and Fiore and
Gennaro [FG12].

Functional Signatures. This work is inspired by the notion of Functional Signatures
(FS) introduced by Boyle et al. [BGI14]. They firstly proposed the formal definition of
FS with unforgeability security as well as two additional desirable properties: function
privacy and succinctness. Boyle et al. defined FS and gave a construction for an FS
scheme, based on one-way functions and satisfying the unforgeability but not the
succinctness or function privacy properties. Furthermore, they showed how to convert
any FS without the function privacy or succinctness properties into an FS scheme that is
succinct and function-private by using a SNARK scheme [GW11, BCCT12, BCCT13].
They also showed how to use an FS scheme to construct a delegation scheme [GGP10],
i.e., non-interactive verifiable computation.

Signatures of Correct Computation. Papamanthou, Shi and Tamassia introduced
Signatures of Correct Computation (SCC) for verifying the correctness of a computation
outsourced in the cloud [PST13]. In the SCC model, an authority wishes to outsource
the execution of a function f to an untrusted server. It generates a pair of master
keys along with a verification key FK(f) for that function which will be used during
verification. Note that the existence of such a verification key for a function f and the
requirement of being used for verification are similar to our formulation of SFS. The
server can then return a signature σ on a value y, which certifies that the result y is
indeed the correct outcome of the function f evaluated on some input. In the syntax
of SCC [PST13], anyone with the public verification key can verify that an untrusted
server correctly computed a function f on a specific input m. However, the verification
algorithm requires the specific input m, used to compute f(m), to be taken as input,
which means that only the client or someone who knows the input m can verify the
correctness of the computation. Therefore, SCC would not achieve any privacy with
respect to the input m. In contrast, our SFS allows anyone to perform the verification
without knowledge of the specific input m.

Publicly Verifiable Computation. Parno et al. [PRV12] have proposed a publicly
verifiable computation (PVC) in which they consider a PVC scheme achieving two
desirable properties: public delegatability and public verifiability. Their definition of
PVC includes a ProbGen algorithm, which encodes a user’s inputs m to a server’s inputs
σm and simultaneously prepares an element ρm to be used for verification. Thus, ρm can
be used to publicly verify that the server returned a correct value. The public delegation
property refers to the existence of a public delegation key pkf for the function f , i.e.,
the key used in the ProbGen algorithm, and publicly available to anyone. Thus, anyone
can use the key and delegate the computation to the cloud.

Parno et al. [PRV12] also gave a construction of a VC scheme with public delegation
and public verifiability from any Attribute-Based Encryption (ABE), which is unfortu-
nately not appropriate to be employed in order to instantiate a SFS since additional
transformations are needed.

Another closely related work is the one by Fiore and Gennaro [FG12], who presented
a very efficient PVC scheme tailored for multivariate polynomials over a finite field based
on bilinear maps. We present a variation of their VC scheme by introducing a separate
Setup algorithm to generate a master key pair for the scheme so that the keys for
the evaluation of different functions could be executed multiple times using the same
parameters for the scheme, which allows the evaluation of multiple functions on the
same instance produced by ProbGen.

Paper organisation. In Sec. 2, we describe the notations and review the primitives
used in the paper. In Sec. 3, we propose two variances: one of Boneh et al.’s signature

108 Paper E - Towards Stronger Functional Signatures

scheme, denoted BLS, and one of the Fiore-Gennaro’s PVC scheme, denoted VC. In
Sec. 4, we provide the definition of SFS and its security properties and we instantiate
an unforgeable and function hiding SFS using the BLS and the VC schemes.

2 Preliminaries

In the following section, we define the notations used through out the paper. We also
provide the assumptions and the definitions of the building blocks that our constructions
rely on.

2.1 Notations and Assumptions
In the paper, we denote with x←RX the random uniform sampling in the set X, with λ
the security parameter. We denote with v a vector and with Zp the ring with p elements.
When not specified, p always represents either a prime or a power of it. Let Pr [E] denote
the probability that the event E occurs. Let G1,G2,GT be groups of the same order
with generators g1, g2, gT correspondingly and the bilinear map e : G1 × G2 → GT of
type-3, i.e. there does not exists an efficient homomorphism map ψ : G2 → G1.
Definition 24 (co-Computation Diffie Hellman [BLS04, FG12]). Let G1,G2,GT be
groups of prime order p. Let g1 ∈ G1,g2 ∈ G2 be generators and e : G1×G2 → GT bilinear
map of type-3, i.e. there does not exists an efficient homomorphism map ψ : G2 → G1.
We sample uniformly at random a, b←RZp and define the advantage of an adversary A
in solving the co-Computational Diffie Hellman (co-CDH) problem as

Advco-CDH
A (λ) = Pr

[
A(p, g1, g2, ga1 , gb2) = gab1

]
If for all adversaries A it exists a negligible ϵ such that Advco-CDH

A (λ) ≤ ϵ, then the
co-CDH Assumption ϵ-holds for the groups G1,G2.

2.2 Closed Form Efficient PRFs
A closed form efficient PRF (Closed Form Efficient (CFE)-Pseudo Random Function
(PRF)), defined by Fiore and Gennaro [FG12] consists of three algorithms CF.KGen,
CF.H and CF.Eval. CF.KGen takes as input a security parameter λ and outputs a secret
key K, from the key space K, and some public parameters pp that specify the domain
X and range Y of the function. For a fixed secret key K, CF.HK takes as input a value
x ∈ X and outputs a value y ∈ Y. It satisfies the pseudo-randomness property: for
every PPT adversary A, (K, pp)← CF.KGen(λ) and any random function ξ : X → Y:

ϵPRF =

∣∣∣∣∣∣ Pr
[
ACF.HK(·)(λ, pp) = 1

]
−

− Pr
[
Aξ(·)(λ, pp) = 1

] ∣∣∣∣∣∣ ≤ negl(λ)

Additionally, the scheme is required to achieve closed form efficiency: consider a
generic computation ϕ that has as input l random values R1, ... , Rl ∈ Y and a vector
of m arbitrary values x = (x1, ... , xm). Assume that the fastest computation time
that takes to compute ϕ(R1, ... , Rl, x1, ... , xm) is T . Let z = (z1, ... , zl) be a l-tuple of
arbitrary values in the domain X . The CF.PRF is said to achieve closed form efficiency
for (ϕ, z) if the algorithm CF.Eval has running time o(T) and it holds

CF.Eval(ϕ,z)(K,x) = ϕ(CF.HK(z1), ... ,CF.HK(zl), x1, ... , xm)

Fiore and Gennaro [FG12] give constructions of closed form efficient PRFs for mul-
tivariate polynomials and matrix multiplication, based on the decision linear assump-
tion.

2. PRELIMINARIES 109

2.3 Functional Signatures
Boyle et al. [BGI14] introduced functional digital signatures (FS), a cryptographic prim-
itive that can be employed to achieve signing delegation.

Definition 25 (Functional Signature [BGI14]). A Functional Signature scheme for
a message space M and function family F = {f : Df → M} consists of the PPT
algorithms FS = (FS.Setup,FS.KGen,FS.Sign,FS.Ver) defined as:

• FS.Setup(λ) → (msk,mvk) : the setup algorithm takes as input the security para-
meter λ and outputs the master signing key msk and the master verification key
mvk.

• FS.KGen(msk, f) → skf : the key generation algorithm takes as input the master
signing key and a function f ∈ F and outputs a signing key skf .

• FS.Sign(f, skf ,m) → (f(m), σ) : the signing algorithm takes as input the signing
key for a function f and an input m ∈ Df , and outputs f(m) and a signature σ
of f(m).

• FS.Ver(mvk,m′, σ) → {0, 1} : the verification algorithm takes as input the master
verification key mvk, a message m′ and a signature σ, and outputs 1 if the signature
is valid.

The definition requires the following conditions to hold:

Correctness a Functional Signature (FS) scheme is correct if for all functions f ∈ F ,
messages m ∈ Df , (msk,mvk) obtained from FS.Setup(λ), skf obtained from FS.KGen(msk, f)
and (m′, σ) obtained from FS.Sign(f, skf ,m), it holds that FS.Ver(mvk,m′, σ) = 1.

Succinctness there exists a polynomial s(·) such that for every λ ∈ N, function f ∈ F ,
message m ∈ Df , master keys (msk,mvk) ← FS.Setup(λ), function key skf obtained
from FS.KGen(msk, f), and (f(m), σ) ← FS.Sign(skf ,m), it holds with probability 1
that |σ| ≤ s(λ, |f(m)|).

Unforgeability FS is unforgeable if the probability of any PPT algorithm A in the FS
unforgeability experiment ExpFS.UNF

FS (A), depicted in Figure 33, to output 1 is negligible.
Namely,

AdvFS.UNF
A,FS (λ) = Pr

[
ExpFS.UNF

FS (A) = 1
]
≤ negl(λ)

Function privacy FS is function private if the advantage of any PPT algorithm A in
the FS function privacy experiment ExpFS.FPriv

FS (A), depicted in Figure 33 is negligible.
Namely,

AdvFS.FPriv
A,FS (λ) =

∣∣∣∣Pr
[
ExpFS.FPriv

FS (A) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ)

2.4 The BLS Signature Scheme
In this section, we will report the Boneh et al.’s signature scheme [BLS04].

Let (p, g1, g2,G1,G2,GT , e) where e : G1×G2 → GT is a bilinear map in the security
parameter λ. Let H : {0, 1}∗ → G1 be a full-domain hash function. The BLS signature
scheme [BLS04] with the message space M = {0, 1}∗ comprises of the following three
algorithms:

• BLS.KGen(λ) → (PK, SK): given a security parameter λ, sample a secret value
SK←$ Zp and compute as the public key PK = gSK2 .

110 Paper E - Towards Stronger Functional Signatures

ExpFS.UNF
FS (A)

(msk,mvk)← FS.Setup(λ)
LF ,L∆ = ∅

(m⋆
, σ

⋆
)← AOFS.key,OFS.sign (mvk)

if
(
∃(f, i, ·) ∈ LF : ∃m′

: m⋆
= f(m′

)
)

∨
(
∃(f, i,m, ·) ∈ L∆ : m⋆

= f(m)
)

return ⊥
else

return FS.Ver(mvk,m⋆
, σ

⋆
)

OFS.key(f ,i)
if (f, i, ·) in LF then

return sk
i
f

else sk
i
f ← FS.KGen(msk, f)

LF ← LF ∪ {(f, i, sk
i
f)}

return sk
i
f

ExpFS.FPriv
FS (A)

(msk,mvk)← FS.Setup(λ)
b←R{0, 1}

(f0,m0, f1,m1)← A(msk,mvk)

if
(
|f0| ̸= |f1| ∨ |m0| ̸= |m1| ∨

∨ f0(m0) ̸= f1(m1)
)

return ⊥

else skfb
← FS.KGen(msk, fb)

(m⋆, σ⋆)← FS.Sign(fb, skfb ,mb)

b
⋆ ← A(msk,mvk,m⋆, σ⋆)

if b
⋆

= b then return 1

else return 0

OFS.sign(f ,i,m)
sk

i
f ← OFS.key(f, i)

σ ← FS.Sign(f, skif ,m)

L∆ ← L∆ ∪ {(f, i,m, σ)}
return σ

Figure 33: Functional signature unforgeability and function privacy experiments.

• BLS.Sign(SK,m) → σ̈: given a secret key SK and a message m ∈ M, compute
H(m) and output the signature σ̈ = H(m)SK.

• BLS.Ver(PK,m, σ̈)→ {0, 1}: given a public key PK, a message m and a signature
σ̈, check e (σ̈, g2)

?
= e (H(m),PK) and output 1 if it is true, otherwise output 0.

The BLS scheme is existentially unforgeable against chosen message attacks in the
random oracle model (ROM), assuming the co-CDH assumption of Def. 24 holds.

2.5 Verifiable Computation

A verifiable computation (VC) scheme allows a client to delegate the computation of a
function f to a server so that the client is able to verify the correctness of the result
returned by the server with less computation cost than evaluating the function directly.
We describe the definition of a verifiable computation (VC) scheme introduced by Parno
et al. [PRV12] and Fiore and Gennaro [FG12].

Definition 26 (Verifiable Computation [PRV12, FG12]). A verifiable computation
scheme VC is defined by the following algorithms:

• VC.KGen(λ, f) → (s̃kf , ṽkf , ẽkf) : the key generation algorithm takes as input a
security parameter λ and the description of a function f , and outputs a secret key
s̃kf that will be used for input delegation, a corresponding verification key ṽkf , and
an evaluation key ẽkf , which will be used for the evaluation of f .

• VC.ProbGen(s̃kf ,m)→ (σ̃m, ρ̃m) : the problem generation algorithm uses the secret
key s̃kf to encode the function input m as an encoded value σ̃m and a corresponding
decoding value ρ̃m.

2. PRELIMINARIES 111

• VC.Compute(ẽkf , σ̃m)→ σ̃y : the computing algorithm takes as input the evaluation
key ẽkf and the encoded input σ̃m and outputs σ̃y, an encoded version of the
function’s output y = f(m).

• VC.Ver(ṽkf , ρ̃m, σ̃y) → y or ⊥ : the verification algorithm takes as input the veri-
fication key ṽkf , the decoding value ρ̃m and the encoded output σ̃y. The algorithm
outputs y if and only if y = f(m) is correctly computed. Otherwise ⊥ is the output.

A publicly verifiable computation scheme is a VC scheme with an additional property
that the verification key ṽkf is published publicly such that anyone can check the
correctness of a performed computation.

Remark 10. The original VC [FG12] is with “secret-key” nature. In the earlier defin-
ition, KGen produces a secret key that was used as an input to ProbGen and, in turn,
ProbGen produces a secret verification value needed for Ver. Later, Parno et al. [PRV12]
introduced the “public-key” VC definition which has both the public delegation and pub-
lic verification properties. The delegation being public or private depends on whether
the evaluation key s̃k is published or kept secret. In our case, we consider the scen-
ario where the Public Verifiable Computation (PVC) scheme is publicly verifiable but
privately delegatable, i.e. the evaluation key ẽkf is secret while the verification key ṽkf is
public. In the paper, we abuse terminology and refer to a PVC scheme when discussing
about a Verifiable Computation (VC) scheme.

Correctness a verifiable computation scheme VC is correct for a class of functions
F if for any f ∈ F , for any tuple of keys (s̃kf , ṽkf , ẽkf) ← VC.KGen(λ, f), for any
m ∈ Df , for any (σ̃m, ρ̃m) ← VC.ProbGen(s̃kf ,m) and any computed σ̃y obtained from
VC.Compute(ẽkf , σ̃m), it holds that VC.Ver

(
ṽkf , ρ̃m, σ̃y

)
= y = f(m).

Security a VC scheme is secure w.r.t. a static attacker if the probability of any PPT
algorithm A in the VC static security experiment ExpVC.StaticVer

VC (A) of Figure 34, to
output 1 is negligible. Namely,

AdvVC.StaticVer
A,VC (λ) = Pr

[
ExpVC.StaticVer

VC (A) = 1
]
≤ negl(λ)

Privacy [FGP14] a VC scheme is said to be private w.r.t. a static attacker if the
advantage of any PPT algorithm A winning in the VC privacy experiment ExpVC.Priv

VC (A)
of Figure 34 is negligible. Namely,

AdvVC.Priv
A,VC (λ) =

∣∣∣∣Pr
[
ExpVC.Priv

VC (A) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ)

2.6 Fiore-Gennaro’s PVC Scheme
Fiore and Gennaro [FG12] propose a publicly VC scheme for the function family F
containing all multivariate polynomials f(x1, ... , xm) with coefficients in Zp for some
prime p, m variables and degree at most d in each variable. Let h : Zmp → Zlp which
expands the input x to the vector (h1(x), ... , hl(x)) of all the monomials as follows:
for all j ∈ {1, ... , l} where l = (d + 1)m, write j = (i1, ... , im) with ik ∈ {0, ... , d},
then hj(x) = (xi11 · · ·ximm). Thus, by using this notation, it is possible to write the
polynomial as f(x) = ⟨f , h(x)⟩ =

∑l
j=1 fj · hj(x) where the fj ’s are its coefficients and

fj ∈ Zp. The construction works over the groups G1,G2,GT of the same prime order p,
equipped with a bilinear map e : G1×G2 → GT . Let us define Poly(R,x) =

∏l
j=1R

hj(x)

j

where R is a random l-dimensional vector of Gl1.

112 Paper E - Towards Stronger Functional Signatures

ExpVC.StaticVer
VC (A)

f ← A
(
1
n)

(s̃kf , ṽkf , ẽkf)← VC.KGen (λ, f)

(σ̃0, ρ̃0) = (∅, ∅)
for i ∈ {1, ... , t = poly(λ)} do

mi ← A
(

ẽkf , ρ̃1, ... , ρ̃i−1

ṽkf , σ̃1, ... , σ̃i−1

)
(σ̃i, ρ̃i)← VC.ProbGen(s̃kf ,mi)

m⋆ ← A
(

ẽkf , ρ̃1, ... , ρ̃t
ṽkf , σ̃1, ... , σ̃t

)
(σ̃, ρ̃)← VC.ProbGen(s̃kf ,m⋆

)

σ̃
⋆ ← A

(
ẽkf , ρ̃1, ... , ρ̃t, ρ̃
ṽkf , σ̃1, ... , σ̃t, σ̃

)
y
⋆ ← VC.Ver(ṽkf , ρ̃, σ̃

⋆
)

if
(
y
⋆ ̸= ⊥

)
∧
(
y
⋆ ̸= f(m⋆

)
)

then return 1

else return 0

ExpVC.Priv
VC (A)

(f0, f1,m0,m1)← A
(
1
n)

if f0(m0) ̸= f1(m1) then

return ⊥
b←R{0, 1}

(s̃kfb
, ṽkfb

, ẽkfb)← VC.KGen (λ, fb)

(σ̃b, ρ̃b)← VC.ProbGen(s̃kfb ,mb)

σ̃yb ← VC.Compute(ẽkfb , σ̃b)

b
⋆ ← A(ṽkfb

, σ̃yb , ρ̃b, f0, f1,m0,m1)

if b
⋆

= b then return 1

else return 0

Figure 34: VC static security and privacy experiments.

Let CF = (CF.KGen,CF.H,CF.Eval) be a CFE PRF defined in Section 2.2. Fiore-
Gennaro’s public verifiable computation scheme [FG12] VC is constructed as the follows:

• VC.KGen(λ, f) → (s̃kf , ṽkf , ẽkf) : Generate the description of a bilinear group
(p, g1, g2,G1,G2,GT , e) in the security parameter λ, a key of a PRFK with range in
G1 as K ← CF.KGen(λ, ⌈log d⌉ ,m). Randomly sample α←RZp and, for all the in-
dexes i ∈ {1, ... , l}, compute Wi = gα·fi1 CF.HK(i) and define W as (W1, ... ,Wl) ∈
Gl1. Output the key tuple

(
s̃kf , ṽkf , ẽkf

)
as the values

(
K, e (g1, g2)

α , (f,W)
)
.

• VC.ProbGen(s̃kf ,m) → (σ̃m, ρ̃m) : Output the tuple
(
σ̃m, ρ̃m

)
where σ̃m = m and

ρ̃m = e (CF.EvalPoly(K,h(m)), g2).

• VC.Compute(ẽkf , σ̃m)→ σ̃y : Compute y by evaluating f(m) =
∑l
i=1 fihi(m) and

V =
∏l
i=1W

hi(m)
i . Output σ̃y = (y, V).

• VC.Ver(ṽkf , ρ̃m, σ̃y) → {y,⊥} : output y if it holds that e (V, g2)
?
=
(
ṽkf
)y · ρ̃m.

Otherwise output ⊥.

Fiore and Gennaro [FG12] proved that the construction is secure if the co-CDH
assumption holds and CF.PRF is a close form efficient PRF. In Lemma 3, we prove that
Fiore-Gennaro PVC scheme satisfies privacy as defined in the experiment depicted in
Figure 34.

3 Construction Blocks: Variated Schemes

In this section, we provide our variations of the Boneh-Lynn-Shacham signature scheme
[BLS04] and Fiore-Gennaro publicly verifiable computation scheme [FG12].

In a nutshell, the variations add to the schemes a “setup algorithm” that outputs
a master key-pair used in the original key-generation algorithm and in the final veri-
fication algorithm while the accordingly modified security games reduce to the ones

3. CONSTRUCTION BLOCKS: VARIATED SCHEMES 113

of the original schemes. The final purpose of these modifications is to later allowing
the instantiation of both the two schemes with a single common master key-pair in a
stronger security setting, where the master secret-key is kept secure as in the act of
“merging” the schemes into a single one. Intuitively, with the shared schemes’ master
public-key, the final verification algorithm will compute the two schemes’ verification
algorithms independently and will verify that the schemes are indeed “merged” into a
single one.

3.1 A variation of the BLS signature
We introduce, in the BLS signature scheme, a Setup algorithm that outputs a master
key-pair (MPK,MSK) used in the KeyGen algorithm to produce a local signing key in
order to generate a signature for a message together with a local verification key. The
Verify algorithm will take both the master public key and the local verification key to
check the validity of a message-signature pair. We provide the unforgeability game for
our BLS variation in Figure 35 and prove the unforgeability of it in the random oracle
model.

Definition 27 (BLS Variation). Let (p, g1, g2,G1,G2,GT , e) where e : G1×G2 → GT is
a bilinear map in the security parameter λ. Let H : {0, 1}∗ → G1 be a full-domain hash
function and F : K × {0, 1}∗ → Zp a PRF. Let the additional information α ∈ Zp be
a field element known just to the signer. Our variation BLS scheme is defined as the
algorithms:

• BLS.Setup(λ) → (MPK,MSK): sample β←$ Zp and set MSK = β. Compute
MPK = e (g1, g2)

β and output (MPK,MSK) ∈ GT×Zp.

• BLS.KGen(MSK, α) → (PK,SK): given MSK ∈ Zp and α ∈ Zp, sample k←$ Zp,
r ∈ Zp and compute secret key as SK = (SK1,SK2) = (gMSK+α+r

1 , k
)

and the public
key as PK = (PK1,PK2) = (e (g1, g2)

α+r , gSK2
2).

• BLS.Sign(SK,m)→ σ̈: given a secret key SK = (SK1, SK2) and a message m ∈M,
compute and output the signature σ̈ = SK1 · H(m)SK2 .

• BLS.Ver(MPK,PK,m, σ̈)→ {0, 1}: given a public key PK = (PK1,PK2), a message
m, a signature σ̈ and a environmental public key MPK, verify and output the result
of the check e (σ̈, g2)

?
= MPK · PK1 · e (H(m),PK2).

ExpBLS.UNF
BLS (A)

(PK, SK)← BLS.KGen(λ)

(m⋆
, σ̈

⋆
)← AOBLS.Sign(SK,·),OH(·)

(PK)

if (m⋆
, σ̈

⋆
) ∈ L∆ then return ⊥

return BLS.Ver(PK,m⋆
, σ̈

⋆
)

ExpBLS.UNF
BLS (A)

(MPK,MSK)← BLS.Setup(λ)

α
⋆ ← A(MPK); L∆ = ∅

(PK, SK)← BLS.KGen(λ,MSK, α⋆
)

(m⋆
, σ̈

⋆
)← A

OBLS.Sign(SK,·),OH(·)
(MPK, PK)

if (m⋆
, σ̈

⋆
) ∈ L∆ then return ⊥

return BLS.Ver(MPK, PK,m⋆
, σ̈

⋆
)

Figure 35: BLS and BLS unforgeability experiments.

We present in Fig. 35 a modified unforgeability experiment for the BLS scheme
which, differently from the BLS standard unforgeability experiment, must consider the

114 Paper E - Towards Stronger Functional Signatures

generation of the master key pair and the value α⋆. We prove that, despite the modi-
fication, unforgeability is preserved.

Proposition 8. If the advantage for all PPT adversaries B for the unforgeability ex-
periment ExpBLS.UNF

BLS (B) is negligible, then all the PPT adversaries A for the experiment
ExpBLS.UNF

BLS (A) have a negligible advantage. Formally:

AdvBLS.UNF
A,BLS (λ) ≤ AdvBLS.UNF

B,BLS (λ) ≤ negl(λ)

Proof. assume that there exists a PPT adversary A for the experiment ExpBLS.UNF
BLS (A)

with non-negligible advantage ∆. The oracles OBLS.Sign(SK)(m) and OBLS.Sign(SK)(m) is to
respond with the signatures on the messages m submitted to each challenger and then
keep a track of the message-signature pair in its queried set L∆. Now we construct an
adversary R, running A as a subroutine, which attacks the underlying BLS scheme.
Receiving from BLS challenger the public key PK⋆, R sets it to be PK2. R runs
BLS.Setup(λ) → (MPK,MSK). It then outputs MPK to A. A will reply with ξ and
α. R fixes SK1 = gMSK+α+r

1 and computes PK1 = e
(
gMSK+α+r
1 , g2

)
and outputs PK =

(PK1,PK2) to A. After the key generation phase, for every signing query OBLS.Sign(m)
from A, the reduction R queries B’s oracle with OBLS.Sign(m) and obtains σ̈⋆. For any
hash query OH(m) from A, R queries B’s hash oracle with OH(m) and obtains H(m). R
computes σ̈ = SK1 · σ̈⋆ and returns it to A. When A outputs the forgery (m⋆, σ̈⋆), the
reduction R outputs (m⋆, σ̈⋆ · g−α−MSK−r

1).
It is direct to check that R output is a correct forgery for the BLS signature scheme

since:

BLS.Ver(PK⋆,m⋆, σ̈⋆ · g−α−MSK−r
1)⇔

e
(
σ̈⋆ · g−α−MSK−r

1 , g2
)

?
= e (H(m⋆),PK⋆)⇔

⇔ e (σ̈⋆, g1)
?
= e (g1, g2)

α+MSK+r · e (H(m⋆),PK⋆)

⇔ e (σ̈⋆, g1)
?
= MPK · PK1 · e (H(m⋆),PK2)

⇔ BLS.Ver(MPK,PK,m⋆, σ̈⋆)

therefore ∆ = AdvBLS.UNF
A,BLS (λ) ≤ AdvBLS.UNF

B,BLS (λ) which is a contradiction.

3.2 A variation of Fiore-Gennaro’s PVC
In our PVC variation, we introduce a master key-pair (m̃sk, m̃pk) that is generated in
the Setup phase and set as (β, e (g1, g2)

β), which adds additional randomness to the
evaluation key of function f such that Wi in Fiore-Gennaro’s PVC is rerandomized to
Wi ·gβ·fi1 . By forcing the master secret-key to be zero, i.e. β = 0, we obtain the original
Fiore-Gennaro’s scheme.

Definition 28 (Fiore-Gennaro PVC Variation). Let pp be the description of a bilin-
ear group (p, g1, g2,G1,G2,GT , e) in the security parameter λ. Our publicly verifiable
computation scheme VC is defined by the following algorithms:

• VC.Setup(λ) → (m̃sk, m̃pk) : the setup algorithm randomly sample β←RZp and
outputs

(
m̃sk, m̃pk

)
=
(
β, e (g1, g2)

β).
• VC.KGen(λ, m̃sk, f) → (s̃kf , ṽkf , ẽkf) : let m̃sk = β. The algorithm samples
α←$ Zp and generates a PRF key K ← CF.KGen(λ, ⌈log d⌉ ,m) with range in G1.
For all i ∈ {1, ... , l}, it computes Wi = g

(α+β)·fi
1 CF.HK(i) and let W be defined as

(W1, ... ,Wl) ∈ Gl1. It outputs
(
s̃kf , ṽkf , ẽkf

)
as
(
(α, gα2 ,K), e (g1, g2)

α , (f,W)
)
.

3. CONSTRUCTION BLOCKS: VARIATED SCHEMES 115

• VC.ProbGen(s̃kf ,m) → (σ̃m, ρ̃m) : Output the tuple
(
σ̃m, ρ̃m

)
where σ̃m = m and

ρ̃m = e (CF.EvalPoly(K,h(m)), gα2).

• VC.Compute(ẽkf , σ̃m) → σ̃y : Compute y by evaluating f(m) =
∑l
i=1 fihi(m) and

V =
∏l
i=1W

hi(m)
i . Output σ̃y = (y, V).

• VC.Ver(m̃pk, ṽkf , ρ̃m, σ̃y)→ {y,⊥}: the algorithm checks if it holds that e (V, g2)
?
=(

ṽkf · m̃pk
)y · ρ̃m. If it is true, then it outputs y. Otherwise it outputs ⊥.

Remark 11. It seems redundant to include α in s̃kf , since the component of (gα2 ,K)

suffices to obtain (σ̃m, ρ̃m). However, looking ahead, the component α of s̃kf plays the
role of building a bridge between VC and BLS in order to achieve an SFS.

We describe the security and privacy experiments in Fig. 36.

ExpVC.StaticVer
VC (A)

(m̃pk, m̃sk)← VC.Setup(λ)

f ← A
(

m̃pk

)

(s̃kf , ṽkf , ẽkf)← VC.KGen
(

λ, f

m̃sk

)
for i ∈ {1, ... , t = poly(λ)} do

mi ← A
(

ẽkf , ρ̃1, ... , ρ̃i−1

ṽkf , σ̃1, ... , σ̃i−1
, m̃pk

)
(σ̃i, ρ̃i)← VC.ProbGen(s̃kf ,mi)

m⋆ ← A
(

ẽkf , ρ̃1, ... , ρ̃t
ṽkf , σ̃1, ... , σ̃t

, m̃pk

)
(σ̃, ρ̃)← VC.ProbGen(s̃kf ,m⋆

)

σ̃
⋆ ← A

(
ẽkf , ρ̃1, ... , ρ̃t, ρ̃
ṽkf , σ̃1, ... , σ̃t, σ̃

, m̃pk

)
y
⋆ ← VC.Ver(ṽkf , ρ̃, σ̃

⋆
)

if
(
y
⋆ ̸= ⊥

)
∧
(
y
⋆ ̸= f(m⋆

)
)

then return 1

else return 0

ExpVC.Priv
VC (A)

(m̃pk, m̃sk)← VC.Setup(λ)

b←R{0, 1}

(f0, f1,m0,m1)← A
(

m̃pk

)
if f0(m0) ̸= f1(m1) then

return ⊥

(s̃kfb
, ṽkfb

, ẽkfb)← VC.KGen
(

λ, fb

m̃sk

)

(σ̃b, ρ̃b)← VC.ProbGen(s̃kfb ,mb)

σ̃yb ← VC.Compute(ẽkfb , σ̃b)

b
⋆ ← A(m̃pk , ṽkfb

, σ̃yb , ρ̃b, f0, f1,m0,m1)

if b
⋆

= b then return 1

else return 0

Figure 36: The static security and privacy experiments for VC scheme. In box are high-
lighted the variations introduced in the VC experiments in comparison to the original
Fiore-Gennaro VC scheme.

Proposition 9. If all PPT adversaries B for the experiment ExpVC.StaticVer
VC (B) have a

negligible advantage, then all the PPT adversaries A for the experiment ExpVC.StaticVer
VC (A)

have a negligible advantage. Formally:

AdvVC.StaticVer
A,VC (λ) ≤ AdvVC.StaticVer

B,VC (λ) ≤ negl(λ)

and, mutatis mutandis, it holds:

AdvVC.Priv
A,VC (λ) ≤ AdvVC.Priv

B,VC (λ)

116 Paper E - Towards Stronger Functional Signatures

Proof. let us assume by contradiction that there exists a PPT adversary A for the
experiment ExpVC.StaticVer

VC (A) with non-negligible advantage ∆. We build an adversary
R, running A as a subroutine, which attacks the security of the underlying VC scheme.
R runs VC.Setup(λ)→ (m̃pk, m̃sk) and then outputs m̃pk to A that will reply with the
challenging function f . The reduction R just forwards it to the challenger of VC scheme
and obtains (ṽkf , ẽkf) where ẽkf = (f,W⋆). R modifies W⋆ into W by computing, for
all i ∈ {1, ... , l}, the new values Wi = Wi⋆ · gm̃sk·fi

1 . It then returns (ṽkf , (f,W))
to A. All the ProbGen queries from A are just forwarded to the challenged of VC
scheme and are responded with the same response from VC challenger. When the
adversary A outputs the forgery (i⋆, σ̃⋆) where σ̃⋆ = (y⋆, V ⋆), the reduction R and
outputs (i⋆, (y⋆, V ⋆ · g−m̃sk·y

1)). It is straightforward to check that R output is a correct
tamper for the VC scheme since:

VC.Ver
(
ṽkf , ρ̃i⋆ ,

(
y⋆,V ⋆ · g−m̃sk·y

1

))
⇔

e
(
V ⋆ · g−m̃sk·y

1 , g2
)

?
= ṽk

y

f · ρ̃i⋆ ⇔

e (V ⋆, g2) e (g1, g2)
−m̃sk·y ?

= ṽk
y

f · ρ̃i⋆ ⇔

⇔ e (V ⋆, g2)
?
= e (g1, g2)

m̃sk·y · ṽk
y

f · ρ̃i⋆

⇔ e (V ⋆, g2)
?
=
(

m̃pk · ṽkf
)y
· ρ̃i⋆

⇔ VC.Ver(m̃pk, ṽkf , ρ̃
⋆
i , σ̃

⋆)

therefore ∆ = AdvVC.StaticVer
A,VC (λ) ≤ AdvVC.StaticVer

R,VC (λ) ≤ negl which is a contradiction.
Similarly, it is easy to define a reduction R for an adversary A for the VC privacy
experiments such that AdvVC.Priv

A,VC (λ) ≤ AdvVC.Priv
R,VC (λ).

We complement Fiore-Gennaro’s results by providing the proof that their original
VC scheme is indeed private, since this is needed to prove the function hiding property
of the SFS construction.

Lemma 3. If CF.PRF is a close form efficient PRF, then the Fiore-Gennaro PVC
scheme is private.

Proof. in order to prove the privacy of the Fiore-Gennaro scheme, we define a sequence
of games that has the random bit b as input.

• Game1(b, A): the experiment ExpVC.Priv
VC (A) is executed by using the original Fiore-

Gennaro scheme;

• Game2(b, A): in this game, the ρ̃mb value is computed as

ρ̃mb = e

(
l∏
i=1

CF.HK(i)hi(mb), g2

)
;

• Game3(b, A): we exchange all the PRF evaluations CF.HK(i) with random ele-
ments Ri;

• Game4(b, A): we split the definition of W into a left and a right component
W = {(WLi ,WRi)}li=1 = {(gαfbi1 , Ri)}li=1 and we substitute Wi with WLi ·WRi ;

• Game5(b, A): after the challenge, we compute y which is equal to f0(m0) =
f1(m1), define WL = gα·y1 and then substitute W with just the right component
W = {WRi}li=1. The game computes V as WL ·

∏l
i=1Ri

hi(mb)

3. CONSTRUCTION BLOCKS: VARIATED SCHEMES 117

We highlight the difference between the games in Figure 37 in which we describe the
challenger computations made after the challenger bit b sampling and before the bit b′
guess. For compactness, we refer to CF.HK with just HK and the notation {·}i where
the index i is contained in the set {1, ... , l}.

Game1(b)

1 :
(
K, e (g1, g2)

α ,
(
fb,
{
g
α·fbi
1 HK(i)

}
i

))
2 :

(
mb, e

(
CF.EvalPoly(K,h(mb)), g2

))
3 :

(
y,

l∏
i=1

W
hi(mb)
i

)

Game2(b)

1 :
(
K, e (g1, g2)

α ,
(
fb,
{
g
α·fbi
1 HK(i)

}
i

))
2 :

(
mb, e

(∏l
i=1 HK(i)hi(mb) , g2

))
3 :

(
y,

l∏
i=1

W
hi(mb)
i

)

Game3(b)

1 :
(
e (g1, g2)

α ,
(
fb,
{
g
α·fbi
1 Ri

}
i

))
2 :

(
mb, e

(
l∏
i=1

Ri
hi(mb), g2

))

3 :

(
y,

l∏
i=1

W
hi(mb)
i

)

Game4(b)

1 :
(
e (g1, g2)

α , (fb,
{(

g
α·fbi
1 Ri

)}
i
)
)

2 :

(
mb, e

(
l∏
i=1

Ri
hi(mb), g2

))

3 :

(
y,

l∏
i=1

((
g
α·fbi
1

)
·Ri

)
hi(mb)

)

Game5(b = 1)

1 : y = f1(m1)

2 :
(
e (g1, g2)

α , (fb,
{(

g
α·fbi
1 Ri

)}
i
)
)

3 :

(
m1, e

(
l∏
i=1

Ri
hi(m1), g2

))

4 :
(
y, gα·y1 ·

∏l
i=1 Ri

hi(m1)
)

Game5(b = 0)

1 : y = f0(m0)

2 :
(
e (g1, g2)

α , (fb,
{(

g
α·fbi
1 R′i

)}
i
)
)

3 :
(

m0, e
(∏l

i=1 R
′
i
hi(m0), g2

))
4 :

(
y, gα·y1 ·

∏l
i=1 R

′
i
hi(m0)

)

Figure 37: The games used for proving the privacy of Fiore-Gennaro PVC scheme.

Claim 1. Pr [Game1(b,A) = 1] = Pr [Game2(b,A) = 1]

Proof. The only difference is on “how to evaluate” the CF.EvalPoly and by its correctness,
the two are equivalent.

Claim 2. |Pr [Game2(b,A) = 1]− Pr [Game3(b,A) = 1]| ≤ ϵPRF

Proof. The difference between the games is that we replace the evaluation of the PRF
with random elements. It is easy to see that an adversary A able to distinguish between
the two games with non-negligible advantage can be used to define an adversary B able
to distinguish the security of the CF.PRF with non-negligible advantage.

Claim 3. Pr [Game3(b,A) = 1] = Pr [Game4(b,A) = 1]

Proof. The two games are equivalent since there is no difference between the two dis-
tributions.

Claim 4. Pr [Game4(b,A) = 1] = Pr [Game5(b,A) = 1]

118 Paper E - Towards Stronger Functional Signatures

Proof. The difference between the two games is merely a computational optimisation
since

∏l
i=1

(
g
α·fbi
1

)hi(mbi
)
= gα·y1 where y = f0(m0) = f1(m1). Thus, there is no

difference between the two games distributions.

Claim 5. Pr [Game5(1,A) = 1] = Pr [Game5(0,A) = 1]

Proof. in order to prove the equality between the two probabilities, it is important to
observe that, since the exponents hi(mb) and hi(m1−b) are fixed, the probability is
measured on the random values Ri and R′i. Fixed Ri, dually R′i, there exists random
values R′i, dually Ri, such that the product

∏l
i=1Ri

hi(mb) is equal to
∏l
i=1R

′
i
hi(m1−b).

Thus, by duality, the probabilities are the same.

Therefore, the advantage is

AdvVC.StaticVer
A,VC (λ) =

= |Pr [Game1(1,A) = 1]− Pr [Game1(0,A) = 1]|

≤ 2 ·
4∑
i=1

|Pr [Gamei(1,A) = 1]− Pr [Gamei+1(1,A) = 1]|+

+ |Pr [Game5(1,A) = 1]− Pr [Game5(0,A) = 1]|
≤ 2 · ϵPRF

4 Strong Functional Signatures

In this section, we define the Strong Functional Signature (SFS) primitive and the
related unforgeability and function hiding experiments. We provide a specific SFS
instantiation using the variated schemes introduced in Sec. 3 and prove it achieves
unforgeability and function hiding.

4.1 SFS Definition

Our definition of an SFS scheme can be seen as a combination of a PVC and a FS
scheme: similar to FS, an SFS scheme achieves delegation of the signing capability
w.r.t. the master key-pair and it also allows the verification of the correct computation
of the signing function f through an additional function public key pkf , as a PVC
scheme.

Definition 29 (Strong Functional Signature). A Strong Functional Signature (SFS)
scheme for a message space M and function family F consists of the PPT algorithms
SFS = (SFS.Setup, SFS.KGen, SFS.Sign, SFS.Ver) defined as:

• SFS.Setup(λ)→ (msk,mvk) : the setup algorithm takes as input the security para-
meter λ and outputs the master signing key and the master verification key.

• SFS.KGen(msk, f) → (pkf , skf) : the key generation algorithm takes as input the
master signing key and a function f ∈ F and outputs a secret signing key skf and
a public verification key pkf w.r.t. the function f .

• SFS.Sign(skf ,m)→ (y, σ) : the signing algorithm takes as input the secret signing
key for a function f ∈ F and a message in the function domain m ∈ Df , and
outputs a value y = f(m) and a signature of f(m).

4. STRONG FUNCTIONAL SIGNATURES 119

• SFS.Ver(mvk, pkf , y
′, σ) → {0, 1} : the verification algorithm takes as input the

master verification key mvk, the public verification key pkf for the function f , a
message y′ and a signature σ, and outputs 1 if the signature is valid and a correct
computation of f , 0 if it is not a correct computation of f or the signature is not
valid.

We require the following conditions to hold:

Correctness for any function f ∈ F , for any message m ∈ Df , master keys (msk,mvk)←
SFS.Setup(λ), function keys (pkf , skf) ← SFS.KGen(msk, f), and (y, σ) obtained from
SFS.Sign(skf ,m), it holds that SFS.Ver(mvk, pkf , y, σ) = 1.

Succinctness there exists a polynomial s(·) such that for every λ ∈ N, function f ∈ F ,
message m ∈ Df , master keys (msk,mvk)← SFS.Setup(λ), function keys (pkf , skf) ob-
tained from SFS.KGen(msk, f), and (f(m), σ) ← SFS.Sign(skf ,m), it holds with prob-
ability 1 that |σ| ≤ s(λ, |f(m)|).

ExpSFS.UNF
SFS. (A)

(msk,mvk)← SFS.Setup(λ); LF ,L∆ := ∅

(pk⋆,m⋆
, σ

⋆
)← AOSFS.key,OSFS.sign (mvk)

if
(
(·, ·, (·, pk⋆), ·) /∈ LF ∨ (f, i, (skif , pk

⋆
), 1) ∈ LF)∨(

(·, ·, pk⋆),m⋆
, ·
)
∈ L∆ ∨

(
(·, ·, ·),m⋆

, σ
⋆
) ∈ L∆

)
then return ⊥

else return SFS.Ver(mvk, pk⋆,m⋆
, σ

⋆
)

OSFS.key(f, i, v)

if (f, i, ·, ·) /∈ LF then

(pkif , sk
i
f)← SFS.KGen(msk, f)

LF ← LF ∪ {(f, i, (sk
i
f , pk

i
f), v)}

if v = 1 then return (pkif , sk
i
f)

else return pkif

if (f, i, (skif , pk
i
f), v̂) ∈ LF then

if v̂ = 1 then return (pkif , sk
i
f)

else return pkif

ExpSFS.FHid
SFS. (A)

(msk,mvk)← SFS.Setup(λ)
b←R{0, 1}
(f0,m0, f1,m1)← A(mvk)

if
(
|f0| ̸= |f1| ∨ |m0| ≠ |m1| ∨

∨ f0(m0) ̸= f1(m1)
)

return ⊥
else

(pkfb
, skfb

)← SFS.KGen(msk, fb)

(y, σb)← SFS.Sign(skfb ,mb)

b
⋆ ← A(mvk, pkfb

, y, σb, f0, f1,m0,m1)

return b
?
= b

⋆

OSFS.sign(f, i,m)

if (f, i, ·, ·) /∈ LF then OSFS.key(f, i, 0)

// Extract (f, i) from LF

(f, i, (skif , pk
i
f), ·) ∈ LF

(f(m), σ)← SFS.Sign(skif ,m)

L∆ ← L∆ ∪ {((f, i, pk
i
f), f(m), σ)}

return (f(m), σ, pkif)

Figure 38: SFS unforgeability and function hiding experiments.

Unforgeability an SFS scheme is said to be unforgeable if the probability of any PPT
algorithm A in the SFS unforgeability experiment ExpSFS.UNF

SFS (A) depicted in Fig. 38 to
output 1 is negligible. Namely,

AdvSFS.UNF
A,SFS (λ) = Pr

[
ExpSFS.UNF

SFS (A) = 1
]
≤ negl(λ)

The main idea behind the unforgeability game is that an adversary A must present a
tamper (pk⋆,m⋆, σ⋆) for an existing honestly generated public key, whose corresponding
secret key is not revealed to A. We allow the adversary to arbitrarily request correct
signatures and new key pairs that can be corrupted depending on the value of v, i.e. if A

120 Paper E - Towards Stronger Functional Signatures

can obtain a corrupted key pair by querying OSFS.key(f, i, 1) where v = 1. We deliberately
do not allow A to corrupt already generated key since this would imply that the third
party that generates the function keys is able to identify whenever a specific public
key is compromised. Despite being possible in the ideal world, this property is hard to
realise in a realistic scenario thus we force A to declare at the generation, if a key pair
is compromised or not.

Function Hiding an SFS scheme is said to be function hiding if the advantage of any
PPT algorithm A in the SFS function hiding experiment ExpSFS.FHid

SFS (A), of Figure 38
to output 1 is negligible. Namely,

AdvSFS.FHid
A,SFS (λ) =

∣∣∣∣Pr
[
ExpSFS.FHid

SFS (A) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ)

Informally, it is impossible for an adversary to distinguish between two different
function evaluations and signatures, i.e., given the public verification key of a single
function, the adversary cannot infer information on “what function does the key verify”.
When comparing to the FS function privacy property, the SFS function hiding require-
ment might appear counter-intuitive since, in the verification phase, it is necessary to
use the public-key pkf , which is related to the function f that must be hidden. The SFS
function hiding property requires that “a public-key should just allow the verification
of the computation but must not provide any information of the function”. This means
that from a public-key pkf , it must be hard to retrieve the corresponding function f .

4.2 An SFS Instantiation
In this subsection, we provide the instantiation of SFS scheme which is a combination
of the Fiore-Gennaro’s PVC variation (as given in Def. 28) and the BLS variation (as
given in Def. 27).

Definition 30. Let BLS be the variated BLS signature scheme of Def. 27 and VC
the variated Fiore-Gennaro PVC scheme of Def. 28. Let the public parameter pp be
the description of a bilinear group (p, g1, g2,G1,G2,GT , e) shared between the BLS and
the VC schemes. Define the SFS scheme for the polynomial function family F , where
every function can be expressed in a binary string representation, with the following
algorithms:

• SFS.Setup(λ)→ pp, (msk,mvk) : on input the security parameter λ, the algorithm
runs BLS.Setup(λ) → (MSK,MPK), or equivalently VC.Setup, and outputs the
master key-pair (msk,mvk) = (MSK,MPK)

• SFS.KGen(msk, f) → (pkf , skf) : on input the master secret key msk and a poly-
nomial function f , execute (s̃kf , ṽkf , ẽkf)← VC.KGen(pp,msk, f), parse the secret
key s̃kf = (α, gα2 ,K) and run the algorithm (PKf , SKf) ← BLS.KGen(λ,msk, α).
Output (pkf , skf) defined as

((
PKf , ṽkf

)
,
(
SKf , (g

α
2 ,K), ẽkf

))
• SFS.Sign(skf ,m) → (y, σ) : given as input a secret key skf and a message m,

parse skf =
(
SKf , (g

α
2 ,K), ẽkf

)
and execute (σ̃m, ρ̃m) ← VC.ProbGen((gα2 ,K),m),

then σ̃y = (y, V)← VC.Compute(ẽkf , σ̃m) and consequently compute the signature
σ̈y ← BLS.Sign(SKf , (y, ρ̃m, V)). Output (y, σ) =

(
y, (ρ̃m, V, σ̈y)

)
• SFS.Ver(mvk, pkg, y

′, σ′) → {0, 1} : parse the inputs σ′ = (ρ̃m′ , V, σ̈y′) and pkg =

(PKg, ṽkg). Execute and output:∧ VC.Ver(mvk, ṽkg, ρ̃m′ , (y′, V))
?
= y′

BLS.Ver
(
mvk,PKg, (y

′, ρ̃′m, V), σ̈y′
) ?
= 1

4. STRONG FUNCTIONAL SIGNATURES 121

Correctness for all SFS.Setup(λ)→ (msk,mvk), functions f ∈ F , SFS.KGen(msk, f)→
(pkf , skf) and messages m and SFS.Sign(skf ,m)→ (y, σ), it holds SFS.Ver(mvk, y, σ) =
1 which translates into

∧ VC.Ver(mvk, ṽkf , ρ̃m, (y, V))
?
= y

BLS.Ver
(
mvk,PKf , (y, ρ̃m, V), σ̈y

) ?
= 1

and by correctness of the underlying BLS and VC scheme, it is indeed correct.

Succinctness we observe that the SFS’s signature consists of three group elements
and it is of constant size, i.e. (ρ̃m, V, σ̈y) ∈ GT ×G1×G1, thereby trivially achieving the
succinctness property.

Unforgeability in order to prove our instantiation to be unforgeable, we will prove a
reduction from the BLS unforgeability experiment ExpBLS.UNF

BLS (B) to the SFS unforgeab-
ility experiment ExpSFS.UNF

SFS (A).

Theorem 6. If for all PPT adversaries B it holds that the advantage AdvBLS.UNF
B,BLS (λ) ≤

negl(λ), then for all PPT adversaries A it holds AdvSFS.UNF
A,SFS (λ) ≤ negl(λ).

Proof. assume that there exists a PPT adversary A such that AdvSFS.UNF
A,SFS (λ) = ∆ for

some non-negligible ∆ > 0. We construct an adversary R, running A as a subroutine,
to break the unforgeability of the underlying BLS scheme. R executes VC.Setup and
obtains the master keys (msk,mvk). R receives from the BLS challenger the public key
PK.

Whenever A queries a compromised key pair via OSFS.key(f, i, 1), R can generate the
keys using VC.KGen and BLS.KGen and therefore can generate keys and compute the
signing algorithm and answer to any adversarial signing query. On the other hand,
whenever A queries a uncompromised pair OSFS.key(g, i, 0), R executes VC.KGen and
generates the keys (s̃kg, ẽkg, ṽkg). R samples a random value z(g,i) sets the public key
PK2 = PK · gz(g,i)2 .

By considering MSK = msk, R samples α, r ∈ Zp, computes SK1 = gMSK+α+r
1

and PK1 = e
(
gMSK+α+r
1 , g2

)
and obtains PKg = (PK1,PK2). Finally, it sends pkg =

(PKg, ṽkg) to A.
In a nutshell, since the reduction R can create all the keys except the challenged

SK, R is always able to correctly execute the verifiable computation scheme but not to
sign the final output of a computation of any message m on the uncompromised func-
tions g. This means that, whenever A queries the signing oracle OSFS.sign(g, i,m) for an
uncompromised function (g, i), R will sequentially execute VC.ProbGen(s̃kg,m) and the
algorithm VC.Compute(s̃kg, σ̃m) to obtain σ̃y = (y, V) and ρ̃m. At this point, R queries
the BLS challenger on the message (y, ρ̃m, V) and obtains σ̈ which afterwards modifies
into the value σ̈y = SK1 · σ̈ · H

(
(y, ρ̃m, V)

)z(g,i) . R replies to A with (y, (ρ̃m, V, σ̈y)).
Whenever A outputs the forgery (pk⋆, y⋆, σ⋆), the reduction R parses the output

σ⋆ = (ρ̃⋆, V ⋆, σ̈⋆) and outputs the BLS forgery:(
(y⋆, ρ̃⋆, V ⋆), σ̈⋆ · SK−1

1 · H
(
(y⋆, ρ̃⋆, V ⋆)

)−z(g,i))
Observe that A must output a forgery for an uncompromised function that, by con-
struction, is always based on the challenged BLS scheme. The SFS unforgeability ex-
periment’s requirements forces A to always tamper at least one between (y⋆, σ⋆) which
always translates into R creating a new tamper never queried before to BLS. Thus, we
can conclude that ∆ = AdvSFS.UNF

A,SFS (λ) ≤ AdvBLS.UNF
B,BLS (λ) which is a contradiction.

122 Paper E - Towards Stronger Functional Signatures

Remark 12. The unforgeability experiment ExpSFS.UNF
SFS. (A) requires the adversary A to

provide a tamper for a challenged public key pk⋆ of a function g which must exist and
be uncompromised. This means that A queried OSFS.key(g, ∗, 0) explicitly or implicitly
via the signing oracle, and only owns the public key pk⋆.

As a matter of curiosity, Thm. 6’s proof can be interpreted as the case where A
cannot forge even if the secret keys are partially compromised. In particular, consider
that the proof’s reduction R returns to A all the VC.KGen generated keys (s̃kg, ẽkg, ṽkg)
which would allow A to always pass the verification VC.Ver. Despite this additional
concession, the proof shows that A is still unable to provide a tamper for BLS. since
A does not hold the BLS. signing secret key, thus making it impossible to create a SFS
tamper.

Function Hiding in order to prove our instantiation to be function hiding, we will
show a reduction from the VC function privacy experiment ExpVC.Priv

VC (B) to the SFS
function hiding experiment ExpSFS.FHid

SFS (A).

Theorem 7. If for all PPT adversaries B it holds that the advantage AdvVC.Priv
B,VC (λ) ≤

negl(λ), then for all PPT adversaries A it holds AdvSFS.FHid
A,SFS (λ) ≤ negl(λ).

Proof. assume the existence of a PPT adversaryA such that AdvSFS.FHid
A,SFS (λ) = ∆ for some

non-negligible ∆ > 0. We then construct an adversary B, running A as a subroutine,
to break the privacy security of the underlying VC scheme. Let R be the reduction
from the VC.Priv experiment to the SFS.FHid one and therefore B the final adversary
that uses R and A. R execute VC.Setup(λ)→ (m̃sk, m̃pk) and sends mvk = m̃pk to the
SFS adversary A. A replies with the challenge (f0,m0, f1,m1) which is forwarded to
the VC.Priv challenger by R. R receives (ṽkfb , σ̃yb , ρ̃b) where σ̃yb = (y, Vb) with y which
is equal to f0(m0) = f1(m1). R executes BLS.KGen(λ,msk, α) for some random α ∈ G
and obtain SK = (SK1, SK2) = (gmsk+α+r

1 , k) and PK = (PK1,PK2) = (e (g1, g2)
α , gk2),

then it signs BLS.Sign(SK, y) and obtains σ̈. The reduction R then replies to the A
with the tuple (ṽkfb , σ̃

⋆
yb , ρ̃b,PK, σ̈) where σ̃⋆yb = (y, Vb

⋆) which is equal to (y, Vb ·gmsk·y
1).

Finally, A’s guess is just forwarded to the challenger in VC’s privacy game.
By observing the SFS.Ver algorithm, we get

∧ VC.Ver(mvk, ṽkfb , ρ̃mb , (y, Vb
⋆))

?
= y

BLS.Ver(mvk,PK,BLS.Sign(SK, y)) ?
= 1

and since the right side is always true, the left side is equivalent to

VC.Ver(mvk, ṽkfb ,ρ̃mb , (y, Vb
⋆)) ⇐⇒

⇐⇒ e (Vb
⋆, g2)

?
= (mvk · ṽkfb)

y · ρ̃mb

⇐⇒ e
(
Vb · gmsk·y

1 , g2
)

?
= mvky · ṽk

y

fb · ρ̃mb

⇐⇒ mvky · e (Vb, g2)
?
= mvky · ṽk

y

fb · ρ̃mb

⇐⇒ e (Vb, g2)
?
= ṽk

y

fb · ρ̃mb

⇐⇒ VC.Ver(ṽkfb , ρ̃mb , (y, Vb))

Therefore, if the adversary A has an advantage ∆, the built adversary B for VC.Priv
that uses R has advantage ∆. In other word, we conclude that ∆ = AdvSFS.FHid

A,SFS (λ) ≤
AdvVC.Priv

B,VC (λ) which is a contradiction.

5. CONCLUSION 123

5 Conclusion

Verifying the correctness of computations is a very valuable property considering the
ever-increasing cloud-assisted computing paradigm. This paper defines Strong Func-
tional Signature (SFS) as an enhanced version of functional signatures with verifiable
computation properties. In a nutshell, SFS introduce a functional public key pkf that
works as a commitment for a function f . This public-key allows in verification to
guarantee the correct computation of the committed function without revealing any in-
formation on the function and to distinguish between different computed functions in
a privacy-preserving way. Furthermore, we provide a concrete instantiation of an SFS
scheme and prove that it satisfies the properties of unforgeability and function hiding.

5.1 Future Investigation (as of July 2021)
During the submission process, an anonymous reviewer brought to our attention a
realistic attack not handled by the unforgeability experiment. The attacker A obtains
a key pair

((
PKf , ṽkf

)
,
(
SKf , (g

α
2 ,K), ẽkf

))
for a function f . Given the knowledge of

K, A selects a different function g with decomposition (g1, ... , gl) and computes

W ′i =

(
Wi

CF.HK(i)

) gi
fi

· CF.HK(i) ∀ i ∈ {1, ... , l}

Observe that the W ′i are indeed the evaluation values that are used to evaluate the
function g, i.e. W ′i = g

(α+β)·gi
1 CF.HK(i). In this way, A creates a key pair for the

evaluation of g and allows him/her to correctly sign SFS.Sign(skg,m) and obtain a
correctly verifiable output (y, σ) such that g(m) = y ̸= f(m).

In other words, this attack allows an adversary that owns a secret key pair for
f to sign any function g evaluation, making it impossible to correctly identify the
computation correctness. Our unforgeability experiment of Fig. 38 does not incorporate
such type/kind of attack as a valid forgery, because we exclude the case of forgery for
any compromised secret key of function f . For this reason, we leave open for future
development an augmented notion of unforgeability as intuitively represented in Fig. 39
and that incorporates the hypothesis of the FS unforgeability experiment FS.UNF of
Fig. 33. The stronger unforgeability experiment would require the adversary to output
a tamper m⋆ that indeed is in the image of f . This implies that there exists a message
m′ such that m⋆ = f(m′). As future work, we will consider how to give an instantiation
that can achieve such an augmented security requirement.

ExpSFS.sUNF
SFS. (A)

(msk,mvk)← SFS.Setup(λ); LF ,L∆ := ∅

(pk⋆,m⋆
, σ

⋆
)← AOSFS.key,OSFS.sign (mvk)

if
(
(·, ·, (·, pk⋆), ·) /∈ LF ∨ (f, i, (skif , pk

⋆
), 1) ∈ LF)∨(

(·, ·, pk⋆),m⋆
, ·
)
∈ L∆ ∨

(
(·, ·, ·),m⋆

, σ
⋆
) ∈ L∆

)
∨

∨ (f, i, (skif , pk
⋆
), ·) ∈ LF , ∃m′

: m⋆
= fi(m′

)

then return ⊥

else return SFS.Ver(mvk, pk⋆,m⋆
, σ

⋆
)

Figure 39: SFS stronger unforgeability experiment.

124 Paper E - Towards Stronger Functional Signatures

Acknowledgment

We thank the anonymous reviewers for pointing out the security concern This work
was partially supported by the Swedish Research Council (Vetenskapsrådet) through
the grant PRECIS (621-2014-4845).

Conclusion 125

Modelling Cryptographic Distinguishers Using Machine Learning

Carlo Brunetta and Pablo Picazo-Sanchez

Chalmers University of Technology, Gothenburg, Sweden

Journal of Cryptographic Engineering
(July, 2021)

Paper F - Modelling Cryptographic Distinguishers Using Machine Learning 129

Abstract: Cryptanalysis is the development and study of attacks against crypto-
graphic primitives and protocols. Many cryptographic properties rely on the difficulty
of generating an adversary who, given an object sampled from one of two classes, cor-
rectly distinguishes the class used to generate that object. In the case of cipher suite
distinguishing problem, the classes are two different cryptographic primitives. In this
paper, we propose a methodology based on machine learning to automatically generate
classifiers that can be used by an adversary to solve any distinguishing problem. We
discuss the assumptions, a basic approach for improving the advantage of the adversary
as well as a phenomenon that we call the “blind spot paradox”. We apply our meth-
odology to generate distinguishers for the NIST Deterministic Random Bit Generators
(DRBGs) cipher suite problem. Finally, we provide empirical evidence that the dis-
tinguishers might statistically have some advantage to distinguish between the DRBGs
used.

Keywords: Cryptanalysis, Distinguisher, Machine Learning, Cipher Suite
Distinguishing Problem, Pseudo Random Generator

130 Paper F - Modelling Cryptographic Distinguishers Using Machine Learning

1 Introduction

Nowadays, we use cryptography for almost all online activities, e.g. payments, secure
messaging and web navigation. Even though cryptography is usually seen as “one”
piece, this is not the case. Cryptographic protocols use different primitives to provide
security and it is always required that each primitive needs to achieve a certain level of
resistance against different attacks to be considered secure. Thus, it is crucial to define
and classify what an attack is.

To define a cryptographic attack, we need to specify the goal and the abilities the
adversary has w.r.t. a security model that describes how the primitive is used and
attacked [KL08, Jou09]. For example, the plaintext recovering of an encrypted message
without having the key is, by no means, the classical example of an attack on an
encryption scheme.

Let us consider the concrete scenario in which an adversary is given an object
sampled from one of two possible classes and the goal is to correctly guess the class
used to generate that object. This adversary is known as a distinguisher for a distin-
guishing problem.

A classical example of a distinguishing problem in cryptography is the one used
for the pseudorandomness property of a primitive (G) [Jou09]. Such a problem is
defined as how to distinguish elements generated by G from those uniformly random
generated, i.e. (G, rand). In other words, to prove the non-pseudorandomness, it would
be sufficient to create a distinguisher D with a non-negligible advantage for solving the
related distinguishing problem.

Machine Learning (ML) and cryptography have been widely combined in the liter-
ature, e.g. from random numbers generation [Koz91, ST96], random number prediction
[KK06, KKG+09, PO14] and supervised algorithm using encrypted data [GAC18] to
testing how good a Pseudo Random Generator (PRG) is [Fis18].
Our Contributions. In this paper, we propose a constructive methodology based on
ML that allows the generation of several distinguishers {Di}i for a given distinguishing
problem between two classes (G0,G1). We implement a tool named MLCrypto and freely
release the code to facilitate future work on this line9.

In a nutshell, we generate a dataset that contains tuples of elements yi together
with the classes from which they are sampled. This dataset is the input of an ML
algorithm whose outputs is a distinguisher Di. It also generates strategies and solutions
to allow an adversary to improve her advantage. Concretely, we present a strategy that
allows us to combine several distinguishers ({Di}i) generated by MLCrypto to create a
more accurate distinguisher D. We further discuss the blind spot paradox, a paradoxical
phenomenon that can annihilate any advantage when the attacker unconscionably uses
tools like MLCrypto in realistic attack scenarios.

We present a case study on the cipher suite distinguishing problem on the PRGs
and based on the National Institute of Standard and Technology (NIST) DRBGs. We
remark the state-of-the-art generation of a distinguisher from statistical test suites and
link it with the advantage in breaking the pseudorandomness property. That is, having
an advantage in discriminating between the PRG and a random element, with the
advantage of distinguishing between two PRGs (G0,G1). We design an experiment
that uses MLCrypto as a distinguisher generator between DRBGs recommended by
NIST [BK15].In more detail, MLCrypto generates Naive Bayes classifiers because of
their (i) computational efficiency, (ii) implementation simplification, and; (iii) the lack
of learning parameter to be tuned. From our experiments, we conclude that both
our methodology and MLCrypto can be used for efficiently generating general purpose
distinguishers.

9https://bitbucket.org/CharlieTrip/mlcryptocode/src/master/

https://bitbucket.org/CharlieTrip/mlcryptocode/src/master/

Introduction 131

Case study: distinguishing NIST DBRGs.
There are two main approaches to generate distinguishers: theoretical, and em-

pirical. The theoretical approach consists of searching for flaws by scrutinizing the
mathematical primitive definition. For instance, there are theoretical attacks [WS19,
CKP+20] against PRGs proposed by NIST [BK15] based on specific differential crypt-
analysis [BS91]. The empirical approach relies on defining a statistically significant
number of experiments to provide enough confidence of the results, used to create a
distinguisher. For instance, the test suite provided by NIST [BRS+10] is composed of
multiple statistical tests that check whether the outputs generated by the PRG have
some kind of correlation with the presence of some pattern—defined by each one of the
tests. After running these tests, the outputs are compared to the result that a uniform
distribution generates. The more passed tests, the more confidence in stating that the
PRG is pseudorandom.

However, all these tests can, and more specifically the failed ones, be used to distin-
guish between PRGs and real randomness. By observing the failing tests, a distinguisher
can infer that the input elements are generated by PRGs. They can be used to define
fingerprints of the PRGs, i.e. each PRG is prone to fail the same tests, uniquely identi-
fying them. Concretely, this distinguisher can be used to solve a related problem named
cipher suite distinguishing problem [Jou09]. Similar to pseudorandomness, an attacker
has to discriminate between objects generated by two different primitives (G0,G1) and
not from random elements.

Related work. Other works propose to distinguish between random numbers gen-
erated with block ciphers [DS06, HGDM+11, HZ19, ST13, ZZL18, Goh19, BBCD20]
of which a vast majority extract features coming from the statistical tests proposed
by NIST (NIST STS) [BRS+10] and use them as inputs of ML algorithms. While the
documentation provided by the NIST does not provide any formal security analysis
[Hir09], Woodgate et al. [WS19] carry out an in-depth security review. Contrarily to
prior proposals, we apply MLCrypto to DRBGs recommended by NIST [BK15], being
able to statistically distinguish between two pairs of generators.

To extract features from NIST STS to distinguish between random data generated
from block ciphers, Zhao et al. [ZZL18] use Support Vector Machines (SVMs). They use
OpenSSL to generate ciphertexts from AES, Camellia, Blowfish, DES, IDEA, and TDEA
algorithms. Authors derive 54 features from the NIST STS, obtaining that accuracies
of 42 features are higher than 50% while the accuracies of 12 features are higher than
60%. Hu et al. [HZ19] use random forest to classify random data from 16 block chipers
instead of the 6 that Zhao et al. use, obtaining an accuracy of 88% in the classification.
Svenda et al. [SUM13] use software circuits together with evolutionary algorithms to
search for patterns, random bit predictability and random data indistinguishability.

Contrarily to the aforementioned works, instead of distinguishing between random
data, we use MLCrypto as a machine learning approach to distinguish between the
functions that generate these data, i.e. in our case study, we create distinguishers
between NIST DRBGs [BK15].

Paper organisation. In Sec. 2, we give a brief introduction to pseudorandom gen-
erators, NIST DRBGs, and machine learning. Sec. 3 describes the methodology for
generating distinguishers using machine learning and additionally discuss limitation,
such as the blind spot paradox, and a possible strategy to amplify the adversarial ad-
vantage. In Sec. 4, we implement our methodology into the MLCrypto tool and consider
a particular case-study based on DRBGs recommended by NIST. This paper ends with
ideas for future work in Sec. 5.

132 Paper F - Modelling Cryptographic Distinguishers Using Machine Learning

2 Preliminaries

In this section, we present definitions and concepts used throughout the paper.

Notation. Let Pr
x∈X

[E] denote the probability computed over the x ∈ X that the event
E occurs. We will omit the probability space whenever it is clear by the context, i.e.
Pr [E]. The random sampling in the set X is denoted as x←RX and, whenever it is not
specified, the sampling is always considered to be uniform at random. Let the natural
number be denoted with N, the real number field with R and the positive ones with R+.
Let [a, b] denote the interval between a and b, comprised. The space of binary strings
of length ℓ is {0, 1}ℓ while ∥ denotes binary concatenation.

Cryptography.
We report the definition of a Pseudo Random Generator (PRG) and the abstract

NIST construction framework for a DRBG. For readability, we omit the error handling
of these constructions.

Definition 31 (PRG [KL08]). Given the positive integers ℓin, ℓout ∈ N with ℓout > ℓin, let
G : {0, 1}ℓin → {0, 1}ℓout be a deterministic function. We say that G is a pseudorandom
generator if the following two distributions are computationally indistinguishable for a
distinguisher D:

• Sample a random seed s←R{0, 1}ℓin and output G(s).

• Sample a random string r←R{0, 1}ℓout and output r.

Definition 32 (Abstract NIST DRBG). Let λ ∈ N be the security parameter, s̃ ∈
{0, 1}λ a bit string obtained by a random source, ℓs ∈ N the seed length and ℓr ∈ N the
number of iterations before requiring the seed’s reseed. We define a seed s̃ ∈ {0, 1}ℓs , a
nonce ν ∈ {0, 1}λ and an auxiliary string aux ∈ {0, 1}∗. Let a NIST abstract DRBG be
defined by the algorithms:

• init(s̃, ν, aux, λ)→ state1: given a random binary string s̃, a nonce ν, an auxiliary
string aux and the security parameter λ, the instantiation algorithm outputs the
initial internal stage state1.

• reseed(state, s̃′, aux) → state′1: given an internal state state, a random binary
string s̃, an auxiliary binary string aux, the reseeding algorithm outputs a fresh
initial internal stage state′1.

• gen(statei, n, aux)→ (y, statei+1): given the internal state statei, a non-zero num-
ber of output bit n ∈ N and an auxiliary string aux, the generation algorithm
outputs the pseudorandom bit-string y ∈ {0, 1}n and the successive internal stage
statei+1.

The DRBG is defined as a state machine and it is depicted in Fig. 40. It takes a
random binary string s̃, a nonce ν, an auxiliary string aux and the security parameter
λ to initialise the internal state and generates the internal state state1. The internal
state statei is used as input of subsequent updates together with a non-zero number
n ∈ N indicating the number of random bits requested and an auxiliary string aux.
It outputs a n random bit-string y and updates the internal state to the next state
statei+1. Whenever it is requested, the DRBG can be reseeded, i.e. it starts again from
a new internal state producing a new state′1 given a previous state statei, a new random
binary string s̃′ and some auxiliary information aux′.

To correctly instantiate the DRBG, the NIST suggests three different constructions:
1) a hash function; 2) the HMAC of a hash function, and; 3) a block cipher in counter-
-mode. NIST requires the use of recommended cryptographic primitives [BK15], e.g.

3. MACHINE LEARNING DISTINGUISHERS 133

HMAC with a secure hash function, AES-128 or SHA-2 family, and a bit string obtained
by a secure random source [BK16, STBK+18]. Whenever it is not specified, we always
consider NIST approved primitives and security parameters.

s̃, ν

aux, λ
init state1

gen

y1

n1

aux1

state2

gen

y2

n2

aux2

... statei

reseed

state′1

...

s̃′, aux′

Figure 40: A state machine representation of the NIST DRBG work flow.

Machine Learning. Roughly speaking, ML is a set of algorithms whose goal is
finding and describing patterns over a dataset. The dataset is usually composed of
independent instances each one defined by a set of features or attributes. Once the
dataset is generated, it is used as input of the ML that produces the knowledge that
has been learnt [Alp14].

There are for main types of learning: (i) supervised learning or classification; (ii) un-
supervised learning or clustering; (iii) association, and; (iv) numeric prediction [WF02].
In supervised learning, the ML learns from an already labelled dataset and it tries to
predict the class of a new instance. On the contrary, in unsupervised learning, the
dataset is not labelled and the ML algorithm looks for common patterns based on heur-
istics. Association seeks for relationships between the features of the dataset whereas
the goal of the numeric prediction learning algorithms is to predict numbers instead of
(labelled) data.

Naïve Bayes. The intuition behind Naïve Bayes is that features are independent
and equally important. This is the consequence of applying the Bayes theorem into
a classification algorithm. There is a particular case of Naïve Bayes algorithm when
the likelihood of the features follows a Gaussian distribution, i.e. when the (continuous)
values associated with each feature are distributed according to a Gaussian distribution.

3 Machine Learning Distinguishers

In this section, we formally define the distinguishing problem and present our meth-
odology which explains how ML can be used to solve a distinguishing problem. We
discuss how to use the accuracy we obtain from ML as a cryptographic advantage, a
curious phenomenon we call “blind spot paradox” and propose a generic methodology
to increase the advantage of a distinguisher at the cost of generating multiple ones.

In cryptography, it is common to find security properties defined by the probabil-
ity of an adversary A being able to distinguish between two different instances. For
example, in a simulation-based proof, A must discriminate between a real execution
of a protocol and an ideal functionality assumed to be secure. Whenever proving the
pseudorandomness of a function, A must choose if a value is computed by the function
or if it is randomly sampled.

134 Paper F - Modelling Cryptographic Distinguishers Using Machine Learning

Machine Learning Crypto + Statistics

Simulated Training Datasets

Target
DatasetG0(ŝi)

G1(ŝi)

G0

G1

ML Di

Y

Figure 41: Abstract representation of our methodology.

Definition 33 (Distinguish problem). Let G0 and G1 be two classes, b←R{0, 1} a
random coin-flip, and y an element of Gb. Consider a distinguisher D that takes as
input y and outputs a guess b′. We define the distinguish problem as D’s task in
discriminating the membership of the value y ∈ Gb between the two classes (G0,G1) and
with advantage10:

AdvD
G0,G1

=
∣∣∣2 · Pr

[
D(y) = bi

]
− 1
∣∣∣ (20)

Even though the abstract definition form, the distinguishing problem appears as the
core concept behind many important cryptographic security problems: pseudorandom-
ness is defined as a distinguishing problem between a primitive G and a real random
process; in an indistinguishable cipher-plaintext attacks it is required to distinguish a
ciphertext between two possible messages, and; the cipher suite problem requires to
discriminate between different primitives (G0,G1).

3.1 Our Methodology: from Classifiers to Distinguishers
Our methodology, depicted in Fig. 41, is based on the idea that a supervised learning
algorithm can be used by an adversary A to create a distinguisher D between two
classes (G0,G1). We must observe that a supervised learning algorithm requires an
input of a labelled dataset of correctly classified values (yi,Gbi), such that yi ∈ Gbi ,
that are used to define the classifier. Our methodology assumes that an adversary A
can pre-compute any labelled simulated training dataset, i.e. A can easily compute
different but related instances of (G0,G1), e.g. by sampling a different secret key. In this
way, A can simulate arbitrarily labelled datasets which might not refer to the original
problem instance between (G0,G1) but are somehow related and thus, we consider them
as correct.

The output of the algorithm is a classifier D that works exactly as a distinguisher,
i.e. provided an element y, it guesses whether y belongs to G0 or G1. The next step
is to consistently evaluate the accuracy that this distinguisher obtains. For the sake
of simplicity, in this paper, we consider the classifier accuracy as the probability of
correctly guessing the class for every element of a target dataset Y. However, other
mechanisms can also be used to evaluate the accuracy like computing the confusion
matrix and cross-validate the obtained results. We formally11 define the accuracy as:

AccD
G0,G1

(Y) = Pr
yi∈Y

[
D(yi) = Gbi

]
Observe that the distinguisher’s accuracy highly depends on the target dataset Y.

This implies that the accuracy computed by a distinguisher generated by our methodo-
10We omit to specify the classes, i.e. AdvD, when they are clear by the context.
11We will omit to specify the classes whenever they are clear by the context.

Machine Learning Distinguishers 135

logy is not directly related to the distinguisher’s advantage previously described in the
distinguishing problem of Def. 33. The reason is that the accuracy is computed over
a target subset Y, which is generally much smaller than the set Y of all the possible
elements. In other words, it is not possible to compare the accuracy Pr

yi∈Y
[D(yi) = bi]

and the probability Pr
yi∈Y

[D(yi) = bi] because the target Y might not be representative
of the whole space Y, i.e. Y might, for example, only contain “easy to classify” elements
providing therefore a high accuracy for D even though it might have no cryptographic
advantage.

Roughly speaking, the accuracy can be seen as a statistical estimator of the ad-
vantage AdvD meaning that there is a strong conceptual gap between theoretical and
empirical results. However, it is possible to estimate both the dimensions and the
number of samples needed to achieve a statistically relevant distinguisher, e.g. by
verifying some accuracy properties with an appropriate statistical test and later evaluate
the power analysis to confirm/evaluate the amount of sample needed to reach statistic
relevance.

For the rest of the paper, we assume that there is always a way to correctly generate
statistically relevant distinguishers Di for any pair of classes (G0,G1). Furthermore, we
refer to D’s advantage as:

AdvD
G0,G1

(Y) =
∣∣∣2 · AccD

G0,G1
(Y)− 1

∣∣∣
Note that, whenever it is possible, the adversary A can generate many different

training datasets, thus obtaining a set of n distinguishers {Di}ni=1 each having its own
accuracy AccDi

G0,G1
(Y). By correctly analysing the accuracy’s distribution, A can consider

different attack strategies. Let us explain this concept with an example. Suppose that
all the distinguishers generated by A have the same accuracy of 0.5. This means that
A has no advantage and therefore must abandon the idea of solving the distinguishing
problem. Differently, if A observes that a distinguisher Di has an accuracy 0.5 − δ
for some positive δ ∈ R+, A can invert Di’s output to define a new distinguisher D′i
with accuracy 0.5 + δ. In this case, A can transform distinguishers with an advantage
in making wrong guesses into distinguishers that make correct guesses with the same
advantage.

In summary, our methodology allows an adversary A to produce ML generated
distinguishers if A can: (i) pre-compute labelled simulated training datasets; (ii) obtain
statistically relevant target datasets, and; (iii) run appropriate tests to evaluate the
accuracy.

Consider an adversary A that, after executing our methodology, obtains several
distinguishers of which she does not know the accuracy distribution. Despite the
odd requirement, observe that this is the standard in practice since, to compute the
accuracy distribution, it is required to obtain a correct target dataset which might not
be obtainable, e.g. a primitive’s security might be defined as a distinguisher problem
where the adversary cannot query the correct primitive instantiation, thus not allowing
A to get any target dataset.

The blind spot paradox, depicted in Fig. 42, is the paradoxical phenomenon
where a blind adversary A, that does not know whether a specific distinguisher has an
advantage or not, is unable to spot how to correctly utilise the results, thus annihil-
ating any advantage possessed. This paradox arises naturally whenever the accuracy
is distributed symmetrically w.r.t. the probability of 0.5. Consider a distinguisher D
and observe that, without any precise knowledge, it is impossible to know if D has a
potential advantage δ or −δ. The symmetric accuracy’s distribution property implies
that the probability of D being a “good” or a “bad” distinguisher is the same. For this
reason, A is unable to properly utilise the potential advantage obtained, thus giving

136 Paper F - Modelling Cryptographic Distinguishers Using Machine Learning

rise to the paradox. To avoid the paradox, it is necessary to allow the adversary to
receive “hints” in the form of a statistically relevant list of target’s outputs correctly
classified. In this way, the adversary can get an estimation of the accuracy distribution
and use this information to “filter out the bad” distinguishers. This completely breaks
the symmetry of the distinguishers and allows them to use the “good” distinguishers.
Of course, these hints might not be allowed by some theoretical security’s properties
but might better represent a realistic usage of such property.

Target
Dataset

D

Y

δ disadvantage
or

δ advantage?

Figure 42: Representation of the blind spot paradox.

3.2 Distinguisher Accuracy Amplification
In this section, we propose a generalisation method to combine and amplify the advant-
age of several independent distinguishers into a more accurate one by assuming that all
the distinguishers have the same accuracy. The underlying reasoning still holds even
when considering different accuracy’s distribution assumptions.

Let us assume we have n distinguishers {Di}ni=1, between classes (G0,G1), all with
the same accuracy p > 0.5. We require the distinguishers to be independent in the
sense that they are generated from different and independent training sets. Our goal is
to consider the majority of all the n distinguisher’s guesses. In order to always have a
majority, we must assume that n is odd, i.e. there exists k ∈ N such that 2k + 1 = n.

Proposition 10. Let k ∈ N, 0.5 < p < 1, n = 2k + 1 and {Di}ni=1 be independent
distinguishers with accuracy p. We define the distinguisher D′ as the majority function
of the n independent Di guesses. Formally: D′(y) = maj (D1(y), ... ,Dn(y)). Then, it
holds that D′ has an accuracy pk greater than p.

Proof. Note that the distinguisher’ outputs define a binomial distribution of parameters
p and n where the probability of “t distinguishers are correct” is:

Pr
[
t are correct

]
=

(
2k + 1

t

)
· (1− p)2k+1−t · pt

The final guess of D′ is defined by at least k + 1 distinguishers that have the same
guess. This implies that the accuracy of D′ directly depends on p and n. Formally, the
probability of correctly guessing the distinguishing game for D′, with q = (1− p), is:

pk = Pr
[
D′ correct

]
= Pr

[
≥ k + 1
Di correct

]
=

=

2k+1∑
t=k+1

(
2k + 1

t

)
· q2k+1−t · pt

Machine Learning Distinguishers 137

Let us recall the binomial identities
(
j
k

)
=
(
j−1
k

)
+
(
j−1
k−1

)
and

(
2k−1
t

)
= 0 whenever

t > 2k − 1. Let us define p0 to be exactly p. Our goal is to consider the probability pk
and obtain a relation w.r.t. pk−1. Then, it holds that:

pk =

2k+1∑
t=k+1

(
2k + 1

t

)
· q2k+1−t · pt

=

2k+1∑
t=k+1

((
2k − 1

t

)
+2 ·

(
2k − 1

t− 1

)
+

(
2k − 1

t− 2

))
· q2k+1−t · pt

=

2k+1∑
t=k+1

(
2k − 1

t

)
· q2k+1−t · pt+

+ 2

2k+1∑
t=k+1

(
2k − 1

t− 1

)
· q2k+1−t · pt +

2k+1∑
t=k+1

(
2k − 1

t− 2

)
· q2k+1−t · pt (21)

Let us take a look at the addend and observe that it can be rewritten as:

2k+1∑
t=k+1

(
2k − 1

t

)
· q2k+1−p · pt = q2 ·

2k−1∑
t=k+1

(
2k − 1

t

)
· q2k−1−t · pt

= q2 ·

(
2k−1∑
t=k

(
2k − 1

t

)
· q2k−1−t · pt

)
− q2

(
2k − 1

k

)
· qk−1 · pk

= q2 · pk−1 −

(
2k − 1

k

)
· qk+1 · pk (22)

where we note the presence of a relation to the winning probability pk−1. Similarly, we
manipulate the second and third addends and obtain:

2

2k+1∑
t=k+1

(
2k − 1

t− 1

)
· q2k+1−t · pt = 2 · p · q ·

2k∑
t=k+1

(
2k − 1

t− 1

)
· q2k−t · pt−1

= 2 · p · q ·
2k−1∑
t=k

(
2k − 1

t

)
· q2k−1−t · pt = 2 · p · q · pk−1 (23)

2k+1∑
t=k+1

(
2k − 1

t− 2

)
· q2k+1−t · pt = p2 ·

2k+1∑
t=k+1

(
2k − 1

t− 2

)
· q2k+1−t · pt−2

= p2 ·
2k−1∑
t=k

(
2k − 1

t

)
· q2k−1−t · pt + p2 ·

(
2k − 1

k − 1

)
· qk · pk−1

= p2 · pk−1 +

(
2k − 1

k − 1

)
· qk · pk+1 = p2 · pk−1 +

(
2k − 1

k

)
· qk · pk+1 (24)

where we used the fact that:(
2k − 1

k − 1

)
=

(2k − 1)!

(k − 1)! · k! =

(
2k − 1

k

)

138 Paper F - Modelling Cryptographic Distinguishers Using Machine Learning

By putting together Equations (22) to (24) into Eq. (21), it holds that:

pk = pk−1

(
q2 + 2qp+ p2

)
+

(
2k − 1

k

)
· qk · pk+1 −

(
2k − 1

k

)
· qk+1 · pk

= pk−1

(
q + p

)2
+

(
2k − 1

k

)
·
(
q · p

)k · (p− q)
= pk−1 +

(
2k − 1

k

)
·
(
q · p

)k · (2p− 1
)

from which we observe that pk > pk−1 whenever:

pk > pk−1 ⇔

(
2k − 1

k

)
·
(
q · p

)k · (2p− 1
)
> 0 ⇔

(
2p− 1

)
> 0 ⇐⇒ p >

1

2

which is true by our hypothesis. The distinguisher D′ built with 2k + 1 distinguisher
has an accuracy pk > pk−1 > · · · > p0 = p, concluding our proof.

4 Case Study: Cipher Suite Distinguisher for Pseudorandom
Generators

In this section, we implement our methodology into the MLCrypto tool which we use
to create distinguishers for NIST DRBGs. We also discuss the connection between
our empirical results and the constraints posed by a possible real attack against the
primitives.

Let us consider a PRG G : {0, 1}ℓin → {0, 1}ℓout , as in Def. 31, and focus on the
pseudorandomness property. Such a property states the indistinguishability between
the distributions of the G’s outputs and the uniformly random elements. By using the
game-proving framework, it is required that any distinguisher D is unable to distinguish
between a random value or G’s output when provided by the challenger. Formally, we
define the advantage as:

AdvD
G,rand(λ) =

∣∣∣∣Pr
[
D(G(s)) = G

]
− Pr

[
D(r) = G

]∣∣∣∣
for some random seed s←R{0, 1}ℓin , uniformly sampled r←R{0, 1}ℓout . The theoretical
approach is conceptually simple and tight but infeasible because it requires a function
that outputs random elements, which is, by other terms, precisely what the PRG tries
to emulate, thus creating a brain-twisting loophole in which the goal is the solution at
the same time.

To avoid this loophole, we can use a statistical approach, which consists of running
several statistical tests using the outputs of G. After running G, the tests compare the
real and the theoretical distributions to accept/reject the hypothesis that G is random
or not. There are several statistical test suites to analyse the PRGs such as NIST
STS [BRS+10], Dieharder [BEB13] and TestU01 [LS07].

Let us explain the approach with an example. Consider a list of N outputs {yi}Ni=1

from a pseudorandom G of which we want to determine if they appear random. To
do so, consider the statistical test that shows the frequency of 1s in the output, i.e. it
returns the number of 1s in a given output binary string.

Theoretically, we know that the output should describe the binomial distribution of
which we know the characteristic function, i.e. the function that describes the probab-
ility distribution. For this reason, we apply the test on the set of outputs {yi}Ni=1 and

Case Study: Cipher Suite Distinguisher for Pseudorandom Generators 139

0 10 20 30 40 50

a) Wrong Fit

0 10 20 30 40 50

b) Ideal Distribution

0 10 20 30 40 50

c) Correct Fit

Figure 43: Example of distribution fitting w.r.t. an ideal binomial distribution.

compare it with the theoretical binomial ones thus testing if the outputs are “binomial
enough”. In Fig. 43, we illustrate the possible outcomes of the test where we compare
the ideal distribution (b) w.r.t. a fitting (c) and a completely random one (a).

The tests take an analytical approach by computing precise values, e.g. the p-value
for some specific statistical test. By repeating the test multiple times, it is possible to
improve the confidence of the result. Sadly, regardless of the number of different tests
we can perform and analyse, this approach can only state if a generator is plausibly
pseudorandom or not.

On the other hand, the statistical approach allows the direct construction of a dis-
tinguisher D for the general pseudorandomness property, i.e. D executes the statistical
test on the given output and uses the test results to discriminate between pseudoran-
dom and non-pseudorandom. A failing test result, allows D to have an advantage in
discriminate non-pseudorandom PRGs.

Let us take a step back and observe that the pseudorandom property can be modified
into a cipher suite distinguishing problem in which a distinguisher D must distinguish
between two different generators G0 and G1, regardless of their pseudorandom proper-
ties. By arithmetic manipulation of Eq. (20), we obtain:

AdvD
G0,G1

(λ) =

∣∣∣∣Pr
[
D(G1(s)) = G1

]
− Pr

[
D(G0(s)) = G1

]∣∣∣∣
=

∣∣∣∣Pr
[
D(G1(s)) = G1

]
− Pr

[
D(r) = G1

]
+ Pr

[
D(r) = G1

]
− Pr

[
D(G0(s)) = G1

]∣∣∣∣
≤
∣∣∣∣Pr
[
D(G1(s)) = G1

]
− Pr

[
D(r) = G1

]∣∣∣∣+ ∣∣∣∣Pr
[
D(r) = G1

]
− Pr

[
D(G0(s)) = G1

] ∣∣∣∣
≤ AdvD

G0,rand(λ) + AdvD
rand,G1

(λ)

where the second addend:∣∣∣∣Pr
[
D(r)=G1

]
−Pr

[
D(G0(s))=G1

] ∣∣∣∣ ≤ AdvD
rand,G1

(λ)

measures the probability of D to wrongly distinguishing G0. By the nature of the abso-
lute value, we can modify this faulty distinguisher into a correct one by just flipping D’s
output. The idea behind our observation is that, by triangular disequality, distinguish-
ing between two generators imposes a lower-bound on the generator’s pseudorandomness
advantage. Formally:

AdvD
G0,G1

(λ) ≤ AdvD
G0,rand(λ) + AdvD

rand,G1
(λ) (25)

Since executing the cryptanalysis necessary to create D is tedious, time-consuming
and a human-intensive task, we use MLCrypto to automatically generate D from different
NIST DRBG outputs.

140 Paper F - Modelling Cryptographic Distinguishers Using Machine Learning

4.1 Experiments and Results

In this section, we analyse the distinguishers generated by MLCrypto for the cipher
suite distinguishing problem. Concretely, we focus on the DRBGs that NIST recom-
mends [BK15]. Also, all the experiments we present in this section were run on an
Intel(R) Core(TM) i7-4790 CPU @3.60GHz and 16GB of RAM with Linux. We im-
plement MLCrypto in Python and all the source code of our tool is freely released for
future research12.

For this experiment, we consider the NIST DRBGs based on the primitives TDEA,
AES-256, SHA-256 and HMAC-SHA-256. The choice of these DRBGs is arbitrary and
if other primitives were chosen, the conclusions remain the same.

For all the experiments, there is a common initial phase where we calculate all pos-
sible pairs of combinations (alg0, alg1) of the primitives and we accordingly generate
the training and target datasets. For the training dataset, we want to simulate an ad-
versary who cannot create such a dataset with the same seed as the target. Thus, all
the training datasets have different seeds than the targets ones. In our case study, we
analyse if the distribution of the accuracy of the distinguishers generated by MLCrypto
(see Sec. 3) is affected by (i) the size of the datasets (training and target), and; (ii) dif-
ferent target dataset. The reason why we chose Naive Bayes classifiers for MLCrypto is
that they are (i) computationally efficient, (ii) simple to implement, and; (iii) lack of
learning parameter to be tuned.

Dataset size. To cross-validate our ML classifiers, we check if the size of the datasets
affects the output of the distinguisher. To do so, we generate for each primitive alg a
training dataset Xalg containing nX outputs of alg, and a target dataset Yalg containing
nY outputs of alg. In more detail, the size of the training (nX) and the target (nY)
datasets are nX ∈ {2i : i ∈ [12, 14]} and nY ∈ {2i : i ∈ [14, 16]} respectively. The
datasets generation is computationally efficient and the size average with 216 values
is ∼ 1.1 MB. We independently execute MLCrypto tX times with a freshly generated
training dataset, say X′, but with the same target dataset Y. Concretely, we consider
tX = 210 which would provide to compute a Cohen’s coefficient of d = 0.0876 for a
statistical power of p = 0.8, whenever analysing the distinguishers’ accuracy distribution
with a one-sample t-Student test with significance level α = 0.5. In other words, the size
of our datasets, as well as the number of tests, provide a (simplistic) statistical analysis
that the obtained classifiers accuracy’s distribution has some statistical confidence. In
Fig. 44, we observe that changing the training dataset size nX does not have any major
impact on the accuracy distribution. This suggests that it is possible to provide smaller
training datasets and still achieving the same accuracy distribution. Finally, we also
checked our model’s ability to predict new data (i.e. avoid overfitting or selection bias),
we obtained the cross-validation value of each one of the experiments we performed. In
more detail, we computed the 10-fold cross-validation using the function provided by
scikit-learn and got a consistent accuracy in all our independent experiments.

Different targets. We generate the training datasets of such primitives and obtain a
distinguisher D for the algorithms (alg0, alg1). Once we have D, we randomly generate
a target dataset and compute the accuracy of the distinguisher as AccD

alg0,alg1 . Fig. 45
depicts that the same distinguishers define different accuracy distributions when com-
puted on different target datasets. This phenomenon is explained by the fact that each
target dataset is generated using a different seed thus making the generator de facto
different. This implies that an increased accuracy advantage δ for a distinguisher D
holds exclusively for a specific target. By changing the target, D changes the advantage
to a different value δ′. We also consider a variation of nY and observe that the peaks

12https://bitbucket.org/CharlieTrip/mlcryptocode/src/master/

https://bitbucket.org/CharlieTrip/mlcryptocode/src/master/

Case Study: Cipher Suite Distinguisher for Pseudorandom Generators 141

4096 8192 16384

tdea − aes256
aes256 − sha256

0.498 0.499 0.500 0.501 0.502 0.498 0.499 0.500 0.501 0.502 0.498 0.499 0.500 0.501 0.502

0

200

400

0

200

400

Accuracy

D

is
tin

gu
is

he
rs

Figure 44: Distinguishers’ accuracy distributions of two arbitrary primitives computed
for 3 different training dataset sizes.

are differently spread. This is coherent when considering that a smaller dataset X′ is
a sample of a bigger one X, meaning that X′ might not be a statistically significant
representation of X. This implies the necessity of always using statistically significant
target datasets when computing the accuracy distribution.

Target 1 Target 2 Target 3 Target 4

tdea − aes256
aes256 − sha256

0.498 0.500 0.502 0.498 0.500 0.502 0.498 0.500 0.502 0.498 0.500 0.502

0

100

200

300

400

500

0

100

200

300

400

500

Accuracy

D

is
tin

gu
is

he
rs

Figure 45: Distinguishers’ accuracy distributions of two arbitrary primitives computed
for 4 different target datasets.

Timing and space efficiency. In total, we generate 4 · (1 + tX) = 4100 independent
datasets, being 4 the number of different primitives considered, and

(
4
2

)
· tX · 3 = 18432

distinguishers, being 3 the distinct nX possible values. Each distinguisher outputs 3 val-
ues, being 3 the number of distinct nY possible values of a total of 55296 measurements.
In Fig. 46 we show how the accuracy of the distinguishers is always distributed with
either a single peak centred in 0.5 or as two symmetric peaks at value 0.5± δ for some
non-negligible δ ∈ R+ of the order of δ ∼ 10−3. This demonstrates that MLCrypto can
create a distinguisher D with advantage AdvD = 2δ. Even though that δ might initially
be small when we consider only the distinguishers with accuracy 0.5 + δ, we apply the
distinguisher’ amplification method presented in Prop. 10 to increase up that advant-
age. For instance, in this case we have tX

2
− 1 = 511 distinguishers with an accuracy of

142 Paper F - Modelling Cryptographic Distinguishers Using Machine Learning

p ∼ 50.1% which implies that the amplification method creates a distinguisher D′ with
accuracy p′ ∼ 51.8%.

TrainingSize = 4096 TrainingSize = 8192 TrainingSize = 16384

TargetS
ize = 16384

TargetS
ize = 32768

TargetS
ize = 65536

0.492 0.496 0.500 0.504 0.5080.492 0.496 0.500 0.504 0.5080.492 0.496 0.500 0.504 0.508

tdea − aes256

tdea − sha256

tdea − sha256hmac

aes256 − sha256

aes256 − sha256hmac

sha256 − sha256hmac

tdea − aes256

tdea − sha256

tdea − sha256hmac

aes256 − sha256

aes256 − sha256hmac

sha256 − sha256hmac

tdea − aes256

tdea − sha256

tdea − sha256hmac

aes256 − sha256

aes256 − sha256hmac

sha256 − sha256hmac

Accuracy

Figure 46: Distinguishers’ accuracy distributions of the combination between the prim-
itives in alg. We compute the distributions for 3 target dataset sizes and 3 training
ones.

For completeness, we execute MLCrypto over all the NIST DRBGs, with training
datasets size nX = 213 and target dataset size nY = 216 of which accuracy distributions
are depicted in Fig. 47. We observe that the accuracy distribution is always symmetric.
This means that a blind adversary A must face the blind spot paradox, allowing us to
empirically confirm that NIST DRBGs are, most probably, hard to distinguish between
themselves. On the other hand, if A can reconstruct the distribution, then there is a
concrete possibility to achieve a non-negligible advantage in distinguishing between the
primitives.

5 Conclusions and Future Work

In this paper, we presented a methodology to use ML in developing practical distin-
guisher for cryptographic purposes. In particular, we show how it can be used for solving
and analysing instances of distinguishing problems, e.g. we analyse the distinguishers
obtained by MLCrypto for the cipher suite distinguishing problem between NIST DRBG.
We foresaw the possibility of applying our tool to cipher suite distinguishing problems
for block ciphers, hash functions, message authentication codes and similar primitives.
The generality of our method allows it to be used for more practical problems related
to side-channel attacks where the attacker is interested in distinguishing between two
primitives based on non-cryptographic measurements, e.g. the power consumption and
the computational timing and provides a consistent framework for future comparison
between distinguishers generated by different ML approaches, e.g. random forest, neural
network or the multi-layers perceptron model [BBCD20].

Conclusions and Future Work 143

aes128 − sha1hmac
aes256 − sha1hmac

aes128 − aes256
sha384 − sha384hmac

sha384hmac − sha512hmac
tdea − sha224
aes256 − sha1

aes128 − sha384
sha1hmac − sha512hmac

aes192 − sha384hmac
aes128 − sha384hmac

sha256 − sha512
aes128 − sha512hmac

aes128 − sha1
aes256 − sha384
sha1 − sha1hmac

aes192 − sha512hmac
aes256 − sha384hmac
sha384 − sha512hmac
aes256 − sha512hmac

sha1 − sha384
sha384 − sha1hmac

sha1hmac − sha384hmac
aes192 − sha384

aes192 − sha1hmac
aes128 − aes192
aes192 − aes256

sha1 − sha384hmac
sha1 − sha512hmac

aes192 − sha256
aes192 − sha1

sha1 − sha256hmac
tdea − sha256hmac

sha256 − sha384hmac
sha224 − sha224hmac

aes192 − sha512
sha256 − sha512hmac
aes256 − sha256hmac

sha1hmac − sha256hmac
aes128 − sha256hmac
sha224 − sha256hmac

sha256 − sha384
tdea − sha224hmac

sha384 − sha256hmac
aes128 − sha256

sha512 − sha384hmac
sha256 − sha1hmac

aes256 − sha256
sha512 − sha512hmac

sha256hmac − sha512hmac
sha256hmac − sha384hmac

sha384 − sha512
sha1 − sha256

aes128 − sha512
sha512 − sha1hmac

aes256 − sha512
aes192 − sha256hmac

tdea − sha1
sha1 − sha512
sha1 − sha224
tdea − aes256

tdea − sha1hmac
tdea − aes128

sha224hmac − sha256hmac
tdea − sha384

aes256 − sha224
sha224 − sha1hmac

aes128 − sha224
tdea − sha512hmac
tdea − sha384hmac

sha256 − sha256hmac
sha224 − sha384

sha224 − sha512hmac
sha224 − sha384hmac

tdea − aes192
sha512 − sha256hmac

aes192 − sha224
sha1 − sha224hmac

aes256 − sha224hmac
sha1hmac − sha224hmac

aes128 − sha224hmac
tdea − sha256

sha384 − sha224hmac
sha224hmac − sha512hmac
sha224hmac − sha384hmac

sha224 − sha256
tdea − sha512

aes192 − sha224hmac
sha224 − sha512

sha256 − sha224hmac
sha512 − sha224hmac

0.494 0.496 0.498 0.500 0.502 0.504 0.506

Accuracy

Figure 47: Distinguishers’ accuracy distribution of all the NIST recommended DRBGs
combinations with training dataset size nX = 213 and target dataset size nY = 216.

144 Paper F - Modelling Cryptographic Distinguishers Using Machine Learning

Acknowledgements. This work was partially supported by the Swedish Foundation
for Strategic Research (SSF).

Conclusions and Future Work 145

Non-Interactive, Secure Verifiable Aggregation for Decentralized,
Privacy-Preserving Learning

Carlo Brunetta1, Georgia Tsaloli1, Bei Liang2, Gustavo Banegas3 and
Aikaterini Mitrokotsa1,4

1 Chalmers University of Technology, Gothenburg, Sweden
2 Beijing Institute of Mathematical Sciences and Applications, Beijing, China

3 Inria and Laboratoire d’Informatique de l’Ecole polytechnique, Palaiseau, France
4 University of St. Gallen, School of Computer Science, St. Gallen, Switzerland

26th Australasian Conference on Information Security and Privacy (ACISP), 2021,
Perth (Australia)

Paper G - Non-Interactive, Secure Verifiable Aggregation for Decentralized, Privacy-Preserving Learning 149

Abstract: We propose a novel primitive called NIVA that allows the distributed
aggregation of multiple users’ secret inputs by multiple untrusted servers. The returned
aggregation result can be publicly verified in a non-interactive way, i.e. the users are
not required to participate in the aggregation except for providing their secret inputs.
NIVA allows the secure computation of the sum of a large amount of users’ data and
can be employed, for example, in the federated learning setting in order to aggregate
the model updates for a deep neural network. We implement NIVA and evaluate its
communication and execution performance and compare it with the current state-of-
the-art, i.e. Segal et al. protocol (CCS 2017) and Xu et al. VerifyNet protocol (IEEE
TIFS 2020), resulting in better user’s communicated data and execution time.

Keywords: Secure Aggregation, Privacy, Verifiability, Decentralization

150 Paper G - Non-Interactive, Secure Verifiable Aggregation for Decentralized, Privacy-Preserving Learning

1 Introduction

Smartphones, wearables and other Internet-of-Things (IoT) devices are all interconnec-
ted generating a lot of data, that often need to be aggregated to compute statistics
in order to improve services. These improvements are often achieved by relying on
machine learning (ML) algorithms, that simplify the prediction and/or inference of
patterns from massive users’ data. Given the high volume of data required, the ML
paradigm creates serious privacy and security concerns [HAP17, LMA+18] that require
a careful security analysis in order to guarantee the minimization of private information
leakage while, concurrently, allowing the aggregation of the collected users’ data. The
growing storage and computational power of mobile devices as well as the increased
privacy concerns associated with sharing private information, has led to a new distrib-
uted learning paradigm, federated learning [MMR+17] (FL). FL allows multiple users to
collaboratively train learning models under the orchestration of a central server, while
providing strong privacy guarantees by keeping the users’ data stored on the source,
i.e. the user’s devices. More precisely, the central server collects and aggregates the
local parameters from multiple users’ and uses the aggregated value in order to train
a global training model. The server plays the role of a central trusted aggregator
that facilitates the communication between multiple users and guarantees the correct
execution of the model update which, often, in current FL frameworks, is obtained by
summing the individual users’ parameters.

The shared model must be kept confidential since it might be employed to infer secret
user information or disrupt the correct model update, e.g. a malicious server might bias
the final result according to its preferences [HAP17, LMA+18, XEQ18, SS15, GGG17].
Furthermore, when the aggregation process is orchestrated by a single central server, this
may lead to single points-of-failure. Our aim is to maximise the distributed nature of the
learning process by: (i) decentralizing the aggregation process between multiple servers;
(ii) providing the ability to verify the correctness of the computed aggregation; and
(iii) guaranteeing the confidentiality of the users’ inputs. Fig. 48 depicts the described
scenario.

Nurse

P
ub

lis
h

User Verification Value

Publish

y1

y2

y3

y1

y2

y3

y1

y2

y3

y1

y2

y3

y1

y2

y3

Is the
Result

Correct?
???

Figure 48: Several users delegate the secure aggregation of their inputs to independent
servers. A threshold amount of server’s outputs is necessary to publicly reconstruct and
verify the resulting aggregated value.

Introduction 151

1.1 Our Contributions

We define NIVA: a Non-Interactive, decentralized and publicly Verifiable secure Aggreg-
ation primitive inspired by the verifiable homomorphic secret sharing primitive intro-
duced by Tsaloli et al. [TM20] but differs in both the construction and hypothesis.
NIVA achieves decentralization by allowing the users to split their secret inputs and
distribute the shares to multiple servers; while only a subset (threshold) of these servers
need to collaborate in order to correctly reconstruct the output. Furthermore, NIVA
allows the public verification of the computed aggregated value and contrary to existing
work [BIK+17, XLL+20], NIVA is non-interactive, i.e. the users participate in the ag-
gregation by releasing the appropriate messages and their participation is not required
for the rest of the aggregation process. This allows NIVA to simplify the handling of
users’ dropping out from the aggregation process, which is a complex problem to handle
in the case of interactive protocols. We further discuss possible optimization to the
verification algorithm and extensions useful for realistic application, e.g. verification of
users’ shares, multiple executions and how to introduce a differentially private [Dwo06]
mechanism. We implement NIVA, evaluate the communication costs, execution time,
and perform a detailed experimental analysis. Furthermore, we compare our primitive
with the current state-of-the-art, i.e. the secure aggregation protocols PPML and Veri-
fyNet proposed by Segal et al. [BIK+17] and Xu et al. [XLL+20] correspondingly. NIVA
optimizes the users’ output and execution time making it several order of magnitude
more suitable than PPML and VerifyNet for the FL setting that requires a big amount
of users, i.e. more than 105 users.

1.2 Related Work

This work addresses a general problem that lies in the intersection of “decentralized
aggregation” and “verifiable delegation of computations”.

Secret Sharing. A threshold secret sharing (SS) scheme allows a user to split a secret
x into multiple shares (x1, x2, ... , xm) that are distributed to different servers. Whenever
at least a threshold number t of servers collaborates by exchanging their shares, they
are able to reconstruct the original secret. If any malicious adversary controls less than
this threshold, it is impossible to reconstruct x. The first instantiation was provided
by Shamir [Sha79]. In the following decades, several publications [Bei11, Bri90, GK06,
Kra94] expanded Shamir’s concept by providing schemes with additional properties
such as verification and homomorphism.

An additive homomorphic secret sharing (additive HSS) allows the server to aggreg-
ate several shares coming from different users into a single one which, when correctly
reconstructed, will allow the reconstruction of the sum of the original secrets. Besides
Shamir’s, the first instance of such a scheme was proposed by Benealoh [Ben87] and
many other variations can be found in the literature [BGI17, FGJS17, LMS18].

Generally, the verifiability property describes the possibility to verify that some
specific value is “correctly evaluated”. Whenever considering this property in the context
of SS, it must be specified if (a) the server wants to verify the user’s received shares; or
(b) anyone wants to check if the servers’ reconstructed secret is indeed the correct one.
Chor et al. [CGMA85] provided the first SS scheme that is able to identify the existence
of a “cheating” user, while Stadler [Sta96] extended it in order to detect both cheating
users and servers. Tsaloli et al. [TLM18] proposed a verifiable homomorphic secret
sharing (VHSS) scheme in which the verifiability property holds by assuming the user’s
honesty in generating the shares but allows the verification of the server’s aggregation
correctness. In this paper, we consider the properties of verifiability and homomorphic
secret sharing as considered by Tsaloli et al. [TLM18]. Our primitive NIVA is inspired

152 Paper G - Non-Interactive, Secure Verifiable Aggregation for Decentralized, Privacy-Preserving Learning

by Tsaloli et al.’s primitive [TM20], however, it is based on a completely different
construction.

Federated Learning and Cryptography. The setting posed by federated learning
(FL) is similar to the aggregation problems we consider. Concretely, every time the
FL model must be updated, the users send their parameters to the server that must
provide the final aggregated model back. The work in Bonawitz et al. [BIK+17] pro-
poses a secure aggregation protocol, called PPML, that achieves security and privacy
with a major focus on maintaining high efficiency. This solution provides a procedure
to correctly handle users’ drop-outs, i.e. users that are unable to correctly termin-
ate the protocol. In the same spirit, Xu et al. [XLL+20] introduced VerifyNet, an
(conceptually) extended version of PPML that introduces a public verification proced-
ure to check the correctness of the aggregation process. However, these solutions are
based on a single central server, and they are therefore susceptible to single point-of-
failure, i.e. if the central server crashes, the whole protocol aborts. To avoid this, it
is required to distribute/decentralise the role of the central server, e.g. by either in-
troducing threshold cryptographic primitives between multiple aggregators [THH+09]
or completely decentralising the aggregation using a blockchain [CZD+19]. Recently,
privacy-preserving aggregation problems have gained substantial attention in the past
few years [TB19, GGG17, XLL+20, CZD+19, THH+09, SS15, PAH+18, BIK+17]. The
solutions presented achieve different properties related to security, privacy, and verifiab-
ility by considering specific cryptographic assumptions, security models, and/or applic-
ation requirements. Our primitive allows to publicly verify the correctness of the final
output, handles the users’ drop-outs as well as possible servers’ failure by distributing
the aggregation computation among several independent servers.

1.3 Paper Organisation

Sec. 2 contains the necessary preliminaries used throughout the paper. Sec. 3 introduces
our primitive NIVA, its security and verifiability properties, further discusses additional
properties and compares to the related work. Sec. 4 describes NIVA’s implementation
details and showcases relevant performance statistics, e.g. execution timing and band-
width usage in relation to scaling the amount of users and servers. Furthermore, we
compare our implementation with Segal et al. [BIK+17] and Xu et al. [XLL+20] for
similar evaluation parameters.

2 Preliminaries

In this section, we show the definitions used throughout the paper.
Denote with Pr [E] the probability that the event E occurs. Let the natural number

be denoted by N, the integer number ring with Z, the real number field with R and the
positive ones with R+. Let [a, b] denote intervals between a and b. Let |X| ∈ N indicate
the cardinality of the set X and rk (A) the rank of the matrix A. Let

∑y∈Y
x∈X be the sum∑

x∈X,y∈Y , respectively
∏y∈Y
x∈X is

∏
x∈X,y∈Y .

Theorem 8 (Rouché-Capelli [CG86]). An n-variable linear equation system Ax = b has
a solution ⇔ rk (A) = rk (A|b) where A|b is the augmented matrix, i.e. A with appended
the column b.

Key Agreement. Let G be a cyclic group of order p prime with generator g, e.g. groups
based on elliptic curves [Kob87]. Let us report the Diffie-Hellman key agreement [DH76]
and the related assumptions.

Preliminaries 153

Assumption 5 (Diffie-Hellman Assumptions). Consider a cyclic group G of prime
order p with generator g and a, b ∈ [0, p−1]. Given elements (A,B) =

(
ga, gb

)
, the

computation Diffie-Hellman problem (CDH) requires to compute the element gab ∈
G. The decisional Diffie-Hellman problem (DDH) requires to correctly distinguish
between (g, A,B, gab) and (g, A,B, gc) for some random c ∈ [0, p−1]. We assume the
advantage of solving the CDH and the DDH problems to be negligible, i.e. ϵCDH < negl
and ϵDDH < negl.

Definition 34 (Diffie-Hellman Key Exchange). The Diffie-Hellman key agreement
scheme is defined with the following algorithms:

• KSetup(λ) → pp: the setup algorithm takes as input the security parameter and
outputs the public parameters pp which contains a prime p, the description of a
cyclic group G of order p and generator g for the group G.

• KGen(pp) → (sk, pk): the key generation algorithm samples the secret key sk ∈
[0, p−1] and computes the public key pk = gsk. It outputs (sk, pk) =

(
sk, gsk

)
.

• KAgree(ski, pkj) → sij: the key agreement algorithm takes in input a secret key
ski and a public key pkj = gskj and outputs the shared secret sij = pkski

j = gskj ·ski .
The scheme is said to be correct if for any pp← KSetup(λ), (ski, pki)← KGen(pp)

and (skj , pkj)← KGen(pp), it holds that KAgree(ski, pkj) = sij = sji = KAgree(skj , pki).
The scheme is said to be secure if for any pp ← KSetup(λ), and keys (ski, pki) ←
KGen(pp,Ui), (skj , pkj)← KGen(pp,Uj), it holds that any PPT adversary A has negli-
gible probability to compute sij from (pki, pkj) which reduces to the CDH Assumption 5.

For our primitive, we use the shared secret sij as a pseudorandom integer despite
being an element of the group G. This is possible by considering a generic hash function
H mapping the group G to the integers Z, which translates sij into a pseudorandom
integer. To avoid heavy notation, we denote this output as sij .

Additionally, consider the discrete logarithm problem for a subset I, i.e. the dLog
problem where the solution is contained in a subset I ⊆ [0, p−1].

Assumption 6 (Discrete Logarithm in Subset I Problem). Consider G a cyclic group
of prime order p with generator g and a subset I ⊆ [0, p−1]. Given y ∈ G, the discrete
logarithm problem for the subset I (dLogI) requires to find the value x ∈ I such
that gx = y.

In order to assume the dLogI problem to be computationally hard, the cardinal-
ity of I needs to be “big enough”, i.e. if |I| > 2160 then the kangaroo Pollard’s rho
algorithm [Pol00] has complexity ∼280 which we consider to be infeasible.

Secret Sharing. We report the additive homomorphic SS scheme’s definition.

Definition 35 (Additive Homomorphic SS Scheme). Let n,m, t ∈ N such that 0 < t <
m. For each i ∈ [1, n], let xi ∈ F be the secret input of the user Ui for some input
space F. Consider the set of servers S = {Sj}j∈[1,m]. Define (t,m)-threshold additive
homomorphic secret sharing scheme as:

• SS.Share
(
xi, t, S

)
→ {xij}j∈[1,m] : given the secret input xi, the threshold value t

and the list of servers S, the share generation algorithm outputs a list of m shares
xij for j ∈ [1,m], one for each server Sj.

• SS.Eval
(
{xij}i∈[1,n]

)
→ yj : given as input a set of shares xij for the same server

Sj, the evaluation algorithm outputs an aggregated share yj.
• SS.Recon

(
t, {yj}j∈T

)
→ y : given as input the threshold value t and a list of

shares yj for a subset of servers Sj ∈ T ⊆ S such that |T | > t, the reconstruction
algorithm outputs the reconstructed secret y.

154 Paper G - Non-Interactive, Secure Verifiable Aggregation for Decentralized, Privacy-Preserving Learning

A (t,m) additive homomorphic secret sharing scheme is said to be correct if for all i ∈
[1, n], any choice of secrets xi ∈ F, for all the shares SS.Share

(
xi, t, S

)
→ {xij}j∈[1,m],

aggregated shares SS.Eval
(
{xij}i∈[1,n]

)
→ yj, for all the servers’ reconstruction subset

T such that |T | > t, it holds that the reconstructed value SS.Recon
(
t, {yj}j∈T

)
→ y is

equal to y =
∑n
i=1 xi.

A (t,m) additive homomorphic secret sharing scheme is secure if for all i ∈ [1, n],
any secrets xi ∈ F, for all the shares SS.Share

(
xi, t, S

)
→ {xij}j∈[1,m], aggregated shares

SS.Eval
(
{xij}i∈[1,n]

)
→yj, an adversary A that controls a servers’ subset T ⊆ S, such

that |T | ≤ t, is unable to obtain the reconstructed value y.

3 NIVA

In this section, we describe the decentralised aggregation problem’s setting as well as
the security and privacy requirements and how they must guarantee public verifiability
of the aggregated computations. We instantiate NIVA and define the security and
verifiability properties.

Consider n users Ui, each owns a secret input xi, and m servers Sj . The goal is to
distribute the computation of the sum of the users secret inputs’

∑n
i=1 xi between the

m servers of which only a designed threshold amount t+1 ≤ m of servers is required to
obtain the aggregated value. Formally:

Definition 36. Let the algorithms (Setup, SGen,Agg,Ver) defined as:
• Setup(λ) → (skI , pkI) : given the security parameter λ, the setup algorithm

provides a keypair (skI , pkI) associated to the user/server I.

• SGen
(
xi, skUi , t, {pkSj}

m
j=1

)
→
(
pkUi , {x̂ij}

m
j=1, Ri, {τij}mj=1

)
: given a secret input

xi ∈ I and the user’s Ui secret key skUi , the designed threshold amount 0 < t <
m−1 and the list of servers’ public keys {pkSj}

m
j=1 from which we obtain the list of

servers’ identities {Sj}mj=1, the share generation algorithm outputs the shares x̂ij,
additional information Ri and the verification coefficients τij to be either shared
with the server Sj or publicly released.

• Agg
(
{(pkUi , x̂ij , Ri)}i∈N , skSj

)
→ (yj , πj , RSj , ρj) : given a set of public keys,

shares and additional information (x̂ij , Ri, pki) for a list of users Ui in the subset
N ⊆ [1, n], the aggregation algorithm outputs the partial evaluation yj, a partial
verification proof πj and additional information (RSj , ρj).

• Ver
(
t, {τij}j∈Mi∈N ,

{
(yj , πj , RSj , ρj)

}
j∈M

)
→
{
y,⊥} : given the threshold t, a set of

servers M with t+1≤ |M | ≤m, given partial evaluations, proofs and additional in-
formation (yj , πj , RSj , ρj) and a set of verification coefficients {τij}j∈Mi∈N for a sub-
set of users N , the verification algorithm outputs the aggregated value y =

∑
i∈N xi

if the servers correctly computed the aggregation of their shares. Otherwise, out-
puts ⊥.

The primitive must be correct, i.e. the verification always outputs y =
∑
i∈N xi

whenever using correctly aggregated outputs computed from correctly generated shares
of the secrets {xi}i∈N . Additionally, the users’ input must be secure. The security
experiment describes a realistic scenario in which the adversary A must recover the
secret inputs xi, which are randomly sampled by the challenger C. The amount of
servers that A is able to compromise is at most t since this servers’ subset is not
enough for using the secret share’s reconstruction algorithm SS.Recon. Our experiment
includes the single-user input privacy, i.e. whenever A requests a challenge for n = 1,
the property holds for the input xi.

NIVA 155

Definition 37 (Security). Consider the primitive of Def. 36 be defined between n users
and m servers and threshold t. Let A be a PPT adversary that maliciously controls t
servers, w.l.o.g. {Sj}tj=1. Consider the security experiment Expsec(A):

1. For every j ∈ [1, t], the challenger C executes Setup(λ) and sends to A all the
corrupted servers’ key-pairs (skSj , pkSj), while for the remaining j ∈ [t + 1,m]
servers, it returns only the non-corrupted server’s public key pkSj .

2. A outputs to C the number of users n to be challenged on.

3. C executes Setup(λ) and generates the key pairs (skUi , pkUi) and randomly samples
an input xi ∈ I for each user Ui.

4. C computes the shares SGen
(
xi, skUi , t, {pkSj}

m
j=1

)
and outputs to A the comprom-

ised servers’ shares
(
pkUi , {x̂ij}

t
j=1, Ri

)
plus all the verification values {τij}mj=1 for

each i ∈ [1, n].

5. A outputs the aggregated secret y⋆.

6. If y⋆ =
∑n
i=1 xi, the experiment outputs 1, otherwise 0.

The primitive is said to be secure if Pr [Expsec(A) = 1] < negl.

Finally, we require to publicly verify the computations of the servers, i.e. the serv-
ers must provide a proof of the correct computation. In other words, the verifiability
property requires the impossibility for an adversary A to force the correct verification
of a wrong aggregated value. This property holds whenever there exists at least one
honestly computed partial evaluation, regardless of the number of servers that A com-
promises. On the other hand, whenever A controls more than t servers, the security
property does not hold, thus obtaining a potentially verifiable primitive but definitely
not secure. For this reason, we design the verifiability experiment in which, before
obtaining the correct partial evaluations, A is allowed to select the subset of inputs
N⋆ to be aggregated and, after receiving the non-compromised partial evaluations, A
outputs tampered partial evaluations for the compromised servers and selects a set M⋆

of evaluations to be used in the verification challenge. The adversarial set M⋆ must
contain at least one honestly generated partial evaluation and it is used to describe
the realistic attack scenario in which the adversary denies the verifier to obtain all the
partial evaluations but at least a honest one is present.

Definition 38 (Verifiability). Consider the primitive of Def. 36 defined between n
users, m servers and threshold t. Let A be a PPT adversary that maliciously controls
k < m servers, w.l.o.g. {Sj}kj=1. Consider the experiment Expver(A):

1. For every j ∈ [1, k], the challenger C executes Setup(λ) and sends to A all the
corrupted servers’ key-pairs (skSj , pkSj), while for the remaining j ∈ [k + 1,m]
servers it returns only the non-corrupted server’s public key pkSj .

2. A outputs to C the number of users n to be challenged on.

3. C executes Setup(λ) and generates the key pairs (skUi , pkUi) and randomly samples
an input xi ∈ I for each user Ui.

4. C computes the shares SGen
(
xi, skUi , t, {pkSj}

m
j=1

)
and outputs to A the comprom-

ised servers’ shares
(
pkUi , {x̂ij}

k
j=1, Ri

)
plus all the verification values {τij}mj=1 for

each i ∈ [1, n].

5. A provides to C the list of inputs N⋆ to be challenged.

156 Paper G - Non-Interactive, Secure Verifiable Aggregation for Decentralized, Privacy-Preserving Learning

6. For each non compromised server Sj where j ∈ [k+1,m], C returns to A the Sj’s
partial evaluations (yj , πj , RSj , ρj)← Agg

(
{(pkUi , x̂ij , Ri)}i∈N⋆ , skSj

)
.

7. A outputs tampered evaluations {yj⋆, πj⋆, RSj ⋆, ρj⋆}kj=1.

8. A provides to C the list of verifying servers M⋆ in which there exists a non-
compromised server Sl ∈M⋆ with l ∈ [k + 1,m].

9. The experiment computes the verification algorithm

Ver
(
t, {τij}j∈M

⋆

i∈N⋆ ,
{
(yj , πj , RSj , ρj)

}
j∈M⋆

)
→ y⋆

and outputs 1 if y⋆ ̸= y =
∑
i∈N⋆ xi, otherwise 0.

The primitive is said to be verifiable if Pr [Expver(A) = 1] < negl.

3.1 NIVA Instantiation

In this section, we provide our instantiation of Def. 36, called NIVA. In a nutshell,
NIVA incorporates into the Shamir’s SS scheme of Sec. 2, the usage of a key-agreement
scheme between the users and the servers. This allows the creation of a “proving value”
used during the verification phase which must be correctly computed by the servers
or, otherwise, the verification process fails.

Definition 39 (NIVA). Let (KSetup,KGen,KAgree) be a key agreement (Def. 34) with
public parameters pp ← KSetup(λ), defined over a cyclic group G with prime order p.
Let n ∈ N be the number of users Ui and m ∈ N be the number of servers Sj. Let
I be a secret input’s space closed under summation such that the dLogI problem of
Assumption 6 is hard. Let N ⊆ [1, n] be a users’ subset and M ⊆ [1,m] a servers’
subset. We refer to Sj ∈M with j ∈M . Let t ∈ N be the evaluation threshold such that
0 < t < m. Define NIVA with algorithms:

• Setup(λ) → (skI , pkI) : given the security parameter λ, the setup algorithm ex-
ecutes KGen(pp) and outputs the result (skI , pkI) =

(
skI , gskI

)
. The Setup al-

gorithm is evaluated by each user Ui and server Sj. All the public keys of the
servers {pkSj}

m
j=1 are publicly released.

• SGen
(
xi, skUi , t, {pkSj}

m
j=1

)
→
(
pkUi , {x̂ij}

m
j=1, Ri, {τij}mj=1

)
: given a secret input

xi ∈ I and the user’s Ui secret key skUi , the designed threshold amount 0 < t <
m−1, the list of servers’ public keys {pkSj}

m
j=1 from which we obtain the list of

servers’ identities {Sj}mj=1, the share generation algorithm instantiates a (t,m)-
threshold additive homomorphic secret sharing scheme by executing the algorithm
SS.Share

(
xi, t, {Sj}mj=1

)
which returns the shares x̂ij for all j ∈ [1,m]. Then, Ui

uses its secret key skUi to compute the shared secrets w.r.t. each server Sj, i.e.
KAgree(skUi , pkSj) → sij. The algorithm samples a random value ri ∈ [0, p−1],
computes Ri = gri , and the verification coefficients

τij = pkxiSj ·R
sij
i = gskSj

xi+ri·sij (26)

The algorithm outputs
(
pkUi , {x̂ij}

m
j=1, Ri, {τij}mj=1

)
. Each user publicly releases

the values {τij}mj=1.

• Agg
(
{(pkUi , x̂ij , Ri)}i∈N , skSj

)
→ (yj , πj , RSj , ρj) : given a set of public keys,

shares and random values (x̂ij , Ri, pki) for a list of users Ui in the subset N ⊆

NIVA 157

[1, n], the aggregation algorithm performs all the key-agreements between Ui and
Sj as KAgree(skSj , pkUi)→ sij, the partial evaluation and proofs as:

yj ← SS.Eval
(
{x̂ij}i∈N

)
πj =

∑
i∈N

sij

RSj =
∏
i∈N

Ri ρj =
∏
i∈N

R
−
∑k ̸=i

k∈N
skj

i

(27)

The algorithm outputs (yj , πj , RSj , ρj).

• Ver
(
t, {τij}j∈Mi∈N ,

{
(yj , πj , RSj , ρj)

}
j∈M

)
→
{
y,⊥} : given the threshold t, a set of

servers M with t+1≤ |M | ≤m, given partial evaluations and proofs (yj , πj , RSj , ρj)

and a set of verification coefficients {τij}j∈Mi∈N for a subset of users N , the verifica-
tion algorithm verifies that for any Sj ,Sj ′ ∈M , it holds RSj = RSj ′ = R. If not,
Ver outputs ⊥. Otherwise, the algorithm verifies that for all the subsets Ti ⊆ M
of t+1 partial evaluations, the reconstruction algorithm SS.Recon

(
t, {yj}j∈Ti

)
re-

turns always the same output y. If not, Ver outputs ⊥. Otherwise, the algorithm
computes

i∈N∏
j∈Ml

τij
?
=

 ∏
j∈Ml

pkSj

y

·
∏
j∈Ml

Rπj · ρj (28)

for all the |M | subsets Ml ⊂M such that |Ml| = |M | − 1. If any check fails, then
the verification algorithm outputs ⊥. Otherwise, the verification algorithm outputs
y.

Corollary 3. NIVA allows the definition of the algorithm:
• OptVer

(
t, {τij}j∈Mi∈N ,

{
(yj , πj , RSj , ρj)

}
j∈M

)
→
{
y,⊥} : given the threshold t, a

set of servers M with t+1 ≤ |M | ≤ m, given partial evaluations and proofs
(yj , πj , RSj , ρj) and a set of verification coefficients {τij}j∈Mi∈N for a subset of
users N , the verification algorithm verifies that for any Sj ,Sj ′ ∈ M , it holds
RSj = RSj ′ = R. If not, Ver outputs ⊥. Otherwise, the algorithm verifies that for
all the subsets Ti ⊆ M of t+1 partial evaluations, the reconstruction algorithm
SS.Recon

(
t, {yj}j∈Ti

)
returns always the same output y. If not, the algorithm

outputs ⊥. Otherwise, the algorithm computes, for each Sl ∈M :∏
i∈N

τij
?
=
(
pkSl

)y ·Rπl · ρl

If any check fails, then the algorithm outputs ⊥. Otherwise, it outputs y.

Remark 13. The main difference w.r.t. Ver is that OptVer takes the |M | different
subsets Ml to be defined as servers’ singletons, i.e. Ml = {Sl} and |Ml| = 1. This
reduces the amount of computation needed to verify Eq. (28). The possibility of using
OptVer might depend on application constraints, e.g. the server Agg’s outputs might
not be directly published but further aggregated by a third party before reaching the final
public verification.

NIVA’s is correct for both the verification algorithms Ver and OptVer.

NIVA Correctness. For any list of key pairs Setup(λ)→ (skI , pkI) for any party I being
a user Ui or server Sj for i ∈ [1, n], j ∈ [1,m], for any user choice of secret inputs
xi ∈ [0, p−1], for all computed shares

SGen
(
xi, skUi , t, {pkSj}

m
j=1

)
→
(
pkUi , {x̂ij}

m
j=1, Ri, {τij}mj=1

)

158 Paper G - Non-Interactive, Secure Verifiable Aggregation for Decentralized, Privacy-Preserving Learning

and for all aggregated values (yj , πj , RSj , ρj) computed as Agg
(
{(pkUi , x̂ij , Ri)}i∈N , skSj

)
,

for any subset of users N , for any servers’ subset M ⊆ S such that |M | ≥ t + 1, the
verification algorithm, i.e. Ver

(
t, {τij}j∈Mi∈N ,

{
(yj , πj , RSj , ρj)

}
j∈M

)
, finds that for any

Sj ,Sj ′ ∈ M , and for any subset Ti of t + 1 partial evaluations, SS.Recon
(
t, {yj}j∈Ti

)
always returns the same y from the correctness of the secret sharing scheme. Finally,
consider Eq. (26), the verification algorithm correctly verifies

i∈N∏
j∈Ml

τij =

i∈N∏
j∈Ml

pkxiSjR
sij
i =

 ∏
j∈Ml

pkSj

∑

i∈N xi ∏
i∈N

R

∑
j∈Ml

sij
i

=

 ∏
j∈Ml

pkSj

y ∏
i∈N

R
∑j∈Ml

k=i
skj+

∑j∈Ml
k∈N,k ̸=i

skj−
∑j∈Ml

k∈N,k ̸=i
skj

i

=

 ∏
j∈Ml

pkSj

y

·
∏
i∈N

R
∑j∈Ml

i∈N
sij

i

(∏
i∈N

Ri

)−∑j∈Ml
k∈N,k ̸=i

skj

(29)

=

 ∏
j∈Ml

pkSj

y

·
∏
j∈Ml

(∏
i∈N

Ri

)∑
i∈N sij ∏

j∈Ml

ρj

=

 ∏
j∈Ml

pkSj

y

·
∏
j∈Ml

Rπjρj

for each subset Ml ⊂M with |Ml| = |M | − 1. The verification algorithm outputs y,
thus proving the correctness of the scheme.

Trivially, the same is true whenever considering the subsets Ml = {Sl}, i.e. the
verification executed by the OptVer algorithm.

Theorem 9 (NIVA Security). If we assume the negligible probability ϵdLogI of solving
the dLogI problem for the input subset I and the additive homomorphic secret sharing
scheme’s security, then NIVA is secure (Def. 37).

NIVA’s Security - Thm. 9. Let dLogI be a hard problem and assume the existence of
an adversary A able to break the Expsec

NIVA(A) experiment of Def. 37.
The reduction R receives a dLogI challenge Z = gz, creates the m servers’ key-pairs

(skSj , pkSj) and provides the corrupted to A. A replies with the amount of challenged
user n. The reduction therefore obtains the n users’ key-pairs (skUi , pkUi) and samples
n− 1 secret inputs {xi}ni=2 such that

∑n
i=2 xi = 0.

Of these secrets, the reduction correctly computes the shares, for i ∈ [2, n], as(
pkUi , {x̂ij}

t
j=1, Ri

)
← SGen

(
xi, skUi , t, {pkSj}

m
j=1

)
.

Regarding i = 1, R samples m uniformly random values x̂1j to be proposed as
shares, correctly randomly sample r1 and computes R1 = gr1 . R computes the shares
secrets s1j and verification values τ1j computed as:

τ1j = Z
skSj ·Rs1j

1 ∀ j ∈ [1,m] (30)

Observe that the computed τ1j are equal to the correct verification coefficient obtained
by using x1 = z as the secret input, formally:

τ1j = Z
skSj ·Rs1j

1 = pkzSj ·R
s1j
i ∀ j ∈ [1,m] (31)

NIVA 159

The reduction returns to A the shares
(
pkUi , {x̂ij}

t
j=1, Ri

)
and all the verification coef-

ficients {τij}mj=1 for each i ∈ [1, n].
Observe that the adversary A is unable to reconstruct the final aggregated value

y =
∑n
i=1 xi since it only posses t shares out of the necessary t + 1 required by the

security of the secret sharing scheme. In other words, the t randomly generated shares
of U1 cannot be used to (even) identify that they are not correctly computed since the
provided communication and a correct execution have the same distribution. At this
point, A replies with the guess y⋆ which is forwarded by R to the dLogI challenger and
observe that:

y⋆ =

n∑
i=1

xi = x1 +

n∑
i=2

xi = z + 0 = z

If A has a non-negligible advantage to win the Expsec
NIVA(A) experiment, R has the

same non-negligible advantage to break dLogI which is assumed to be hard, which is a
contradiction. Thus:

Pr [Expsec
NIVA(A) = 1] = ϵdLogI < negl

which proves that NIVA is secure.

Theorem 10 (NIVA Verifiability). Consider n users and m servers, with threshold t
such that the order p of the cyclic group G used for the key-agreement does not divide
m−1. Let A be a PPT adversary that maliciously controls k < m servers, w.l.o.g.
{Sj}kj=1. It holds that NIVA is verifiable (Def. 38).

NIVA’s Verifiability - Thm. 10. Similarly to before, the adversary A provides N⋆, it is
unable to reconstruct the final aggregated value y =

∑n
i=1 xi since it only posses t

shares out of the necessary t+ 1 required by the security of the secret sharing scheme.
Additionally, the choice of N⋆ does not have any security impact and it is only necessary
for the challenger C to correctly compute the partial evaluations.

Consider {yj , πj , RSj , ρj}kj=1 the honestly computed partial evaluations and observe
that A’s tamper {yj⋆, πj⋆, RSj ⋆, ρj⋆}kj=1 must, when reconstructed, obtain the final
output y⋆ to be y +∆ for any subset of t+1 partial evaluation in M⋆ for some ∆ ̸= 0.
We can denote the tampers as, for any j, πj⋆ = πj + ϵj and ρj⋆ = ρj · ξj . Observe that,
all the RSj ⋆ must be equal to the correct R obtained from the mandatory uncorrupted
server S ∈M⋆.

Let us focus on Eq. (28), and observe that for the subset Ml,

i∈N∏
j∈Ml

τij =

 ∏
j∈Ml

pkSj

y⋆

·
∏
j∈Ml

Rπj
⋆

ρj
⋆

=

 ∏
j∈Ml

pkSj

y

·
∏
j∈Ml

Rπjρj ·

 ∏
j∈Ml

pkSj

∆

·
∏
j∈Ml

Rϵj ξj
⋆

where, in order to be correctly verified, it must hold, for each Ml,∏
j∈Ml

pk∆
Sj ·R

ϵj ξj
⋆ = 1 ∀Ml ⊂M (32)

where each Ml can be split into the corrupted and the honest servers subsets, i.e.
Ml

⋆=Ml ∩
{
Sj
}
j∈[1,k] and M̃l=Ml ∩

{
Sj
}
j∈[k+1,m]

where µl = |Ml
⋆|. We can therefore

160 Paper G - Non-Interactive, Secure Verifiable Aggregation for Decentralized, Privacy-Preserving Learning

expand Eq. (32) and obtain the system of equations:

∏
j∈M1

⋆

pk∆
Sj ·R

ϵj ξj
⋆ =

∏
j∈M̃1

pk−∆
Sj

...∏
j∈Mµ

⋆

pk∆
Sj ·R

ϵj ξj
⋆ =

∏
j∈M̃µ

pk−∆
Sj

(33)

which can be seen as |M | = µ equations in |Ml
⋆| ≤ µ−1 variables, i.e. A sees pk∆

SjR
ϵj ξj

⋆

as the variable gxj for each Sj ∈ Ml
⋆. This system has the same solution space as the

system obtained by considering the exponents. In other words,

∏
j∈M1

⋆

gxj =
∏
j∈M̃1

g−∆skSj

...∏
j∈Mµ

⋆

gxj =
∏
j∈M̃µ

g−∆skSj

⇐⇒

∑
j∈M1

⋆

xj =
∑
j∈M̃1

−∆skSj

...∑
j∈Mµ

⋆

xj =
∑
j∈M̃µ

−∆skSj

(34)

Denote the vector of variables with x = (x1, ... , xµl) and the known coefficient
with b = (−skSj∆)µj=µl

.By properly ordering the servers, Eq. (34) form the non-
homogeneous linear system (

Dµl

1
µl
(µ−µl)

)
· x =

(
1
(µ−µl)
µl

D(µ−µl)

)
b (35)

which can be seen as the homogeneous system

Dµ ·
(
x
b

)
=

(
Dµl 1

(µ−µl)
µl

1
µl
(µ−µl)

D(µ−µl)

)
·
(
x
b

)
= 0µ (36)

where 1cr denotes a matrix of r rows and c columns with all entries equal to one,
0µ is the zero vector of length µ, idk is the identity matrix and Dk = 1kk − idk, i.e. a
k-square matrix of ones and null diagonal. Observe that we can verify the existence of
a solution for Eq. (35) by using the Rouché-Capelli’s theorem of Thm. 8. To do so, let
us first prove that Dk always has maximum rank.

Lemma 4. Consider the matrices defined over a field of characteristic p prime. For
any k ∈ N, k > 0 and such that p does not divide k− 1, Dk has maximum rank, i.e. Dk
is invertible.

Proof. By reducing the matrix via the Euclidean algorithm,

Dk =⇒

1 1 ... 1 0

1 ...
... 0 1

...
...

...

1 0
... ... 1

0 1 ... 1 1

=⇒

1 1 ... 1 0

0 ...
... −1 1

...
...

...
0 −1 0 ... 0
0 1 ... 1 1

 =⇒

1 1 ... 1 0
0 1 ... 0 −1
...

. . .
...

0 0 ... 1 −1
0 0 ... 0 (k − 1)

from which we extract that the determinant of Dk is det(Dk) = k− 1. Since p does not
divide k−1, we have that det(Dk) ̸= 0 thus Dk is invertible and of maximum rank.

NIVA 161

By applying the lemma, we conclude that the system of Eq. (36) has rank µ while
the one in Eq. (35) has rank µl = |Ml

⋆| ≤ µ−1 < µ. Rouché-Capelli guarantees that
no solution exists that satisfies the system. Thus, A is unable to provide a correct
tamper, thus NIVA is verifiable and Pr [Expver

NIVA(A) = 1] = 0.

Observe that in the definition of the verification algorithm Ver, the servers’ subset
M always allows the existence of |M | = µ different subsets Ml ⊂ M with |Ml| = µ−1
obtained as Ml = M \ {Sl} for each Sl ∈ M . We require M to have at least t + 1
elements in order to execute the SS reconstruction SS.Recon.

Corollary 4. NIVA achieves verifiability even in the case of using OptVer as the veri-
fication algorithm.

NIVA’s OptVer Verifiability - Corollary 4. The OptVer’s correspondent system of Eq. (35)
is (

idµl
0
µl
(µ−µl)

)
· x =

(
0
µl
(µ−µl)

id(µ− µl)

)
b

where 0cr denotes a matrix of r rows and c columns with all entries equal to zero. This
can be seen as the homogeneous system

idµ ·
(
x
b

)
=

(
idµl 0

µl
(µ−µl)

0
µl
(µ−µl)

id(µ− µl)

)
·
(
x
b

)
= 0µ

Since the identity function has maximal rank, the two systems have different ranks
and, exactly as in the proof, Rouché-Capelli guarantees us that no solution exists thus
A is unable to provide a correct tamper.

3.2 Additional Properties and Extensions
In this subsection, we discuss how additional properties presented by concurrent prim-
itives/protocols [TM20, TLM18, BIK+17, XLL+20] apply to NIVA.
Multiple Executions. In the FL setting, it is required to execute the aggregation multiple
times. NIVA is described for a single execution but the same generated key pairs allow
the execution of multiple aggregation/verification calls.
Decentralization. Several published protocols [BIK+17, XLL+20] do not consider this
decentralized scenario making their server a single point-of-failure, i.e. if the central-
ized server halts, the protocol cannot be terminated. NIVA decentralizes the aggregation
between several servers and only a predefined amount is necessary for the correct re-
construction and verification of the output. This allows to overcome realistic problems
such as “complete the aggregation in case of failing servers” or introduce “responsibilit-
ies distribution”, i.e. the servers might be owned by different independent entities and
not by a single organisation.
Non-Interactivity and User Drop-Out. The aggregation problem discussed in this section
can be solved either with an interactive protocol or a non-interactive primitive. The
first allows the use of a “challenge-response” interaction that facilitates the computation
of more complex verification protocols but introduces the users’ drop-out problem,
i.e. the user might drop-out during the communication thus are not able to finish the
aggregation protocol, forcing the servers to abort the protocol. To overcome this issue,
the protocol must be able to identify the drop-outs and recover the user’s information to
complete the aggregation or, if not possible, having a procedure for removing the user’s
initial participation. In a non-interactive solution, such as NIVA, a user cannot drop-
out since there is no interaction. A dropping user in the non-interactive communication

162 Paper G - Non-Interactive, Secure Verifiable Aggregation for Decentralized, Privacy-Preserving Learning

is equivalent to a user that never participated. Thus any non-interactive solution is
trivially able to overcome the users’ drop-out problem.

On the other hand, interactivity allows to easily introduce input’s range proof [PB10,
CLZ12, LYAX18], i.e. a proof, generally in zero-knowledge, that allows the server to
verify that the values obtained are indeed related to the user’s secret input without
revealing it. It might be possible to transform these zero-knowledge protocols into non-
interactive proofs at the cost of introducing additional assumptions, e.g. the random
oracle model for the Fiat-Shamir’s transformation [FS87]. NIVA design’s principle is
simplicity with a small amount of assumption required; thus, allowing a more general
deployment for different application/security models.
Authentication and Publishing. In this work, we do not consider malicious adversar-
ies that are able to diverge from the correct communication. Similarly to the non-
interactivity discussion, it might be possible to prevent active attacks by achieving
communication authentication by, for example, force the registration of the servers’
public keys on a public key infrastructure and using authenticated communications,
e.g. communicating over a TLS channel. Additionally, NIVA requires the existence of
an untamperable public “space” (e.g. a bulletin board) in which the partial proofs τij
to be used in the verification phase, will be stored. These requirements must be care-
fully considered whenever NIVA is used in a framework where active adversaries are a
possibility.
Differential Privacy. Specific applications related to privacy preserving aggregation
require a higher-level of privacy, especially when multiple aggregation outputs are pub-
lished and from which it might be possible to infer information on a specific user/group.
This is the case study for differential privacy [Dwo06] and the framework that imple-
ments it. Without entering tedious details, it is possible to utilize NIVA for differential
private and distributed aggregation since it is possible to introduce the correctly sampled
noise by using the additive-homomorphic property. The specific protocol for fairly and
publicly generating the noise are tangent to NIVA’s definition and to other abstract
frameworks.

4 Implementation and Comparisons

In this section, we provide relevant statistics and performance measurements retrieved
after implementing our primitive NIVA. We conclude by comparing NIVA with the res-
ults obtained by Segal et al.’s protocol [BIK+17] and Xu et al.’s VerifyNet [XLL+20].
NIVA is implemented as a prototype in Python 3.8.3 and we execute the tests on Ma-
cOS 10.13.6 over a MacBookPro (mid 2017) with processor Intel i5-7267U CPU @
3.1GHz, with 16GB LPDDR3 2133MHz RAM, 256kB L2 cache and 4MB L3 cache. The
source code of our implementation is publicly released13. For our experiments, the key
agreement used is Diffie-Hellman over the elliptic curve secp256k1 and the additive ho-
momorphic SS is Shamir’s SS. The execution time is expressed in milliseconds (ms) and
the bandwidth in kilobytes (kB).

The NIVA primitive is executed with respect to n users, m servers with the threshold
parameter t and µ denoting the size of the verification set M . The total communication
cost, i.e. users and servers’ output data, is expected to be linearly dependent w.r.t. the
numbers m and n, since each server has a constant size output, while the users are
in total communicating nm shares xij and verification values τij . Fig. 49 reports the
expected behaviour.

Consider the metrics for a single user U and a server S, depicted in Figures 50a
and 50b. As expected, U’s output data depends linearly on the amount of servers m.

13https://bitbucket.org/CharlieTrip/nivacode/src/main/

https://bitbucket.org/CharlieTrip/nivacode/src/main/

Implementation and Comparisons 163

50

150

250

350

450

550

650

750

850

950

100 200 300 400 500

Users

T
o
ta

l
D

a
ta

 C
o
m

m
u
n
ic

a
ti
o
n
 (

k
B

)

2

4

6

8

10
Servers

Figure 49: NIVA’s total communication bandwidth for a different number n of users
and m of servers and fixed t = 1 and µ = 2.

The same applies for S’s bandwidth and execution time, since they are linear w.r.t.
the n users. Despite expecting S’s input data to be always constant when considering
different amount of servers and fixed n, our experiments present a decreasing S’s data
when increasing the amount of server. This is due to the approximation introduced by
the Python data-measuring package used.

0.5

0.7

0.9

1.1

1.3

1.5

1.7

2 4 6 8 10

Servers

U
s
e

r
O

u
tp

u
t

D
a

ta
 (

k
B

)

3

5

7

9

11

13

2 4 6 8 10

Servers

U
s
e

r
O

u
tp

u
t

T
im

e
 (

m
s
)

100

200

300

400

500
Users

(a) User’s data and computation time for a different number m of servers.

20

30

40

50

60

70

80

90

100

110

120

130

100 200 300 400 500

Users

S
e

rv
e

r
In

p
u

t
D

a
ta

 (
k
B

)

200

300

400

500

600

700

100 200 300 400 500

Users

S
e

rv
e

r
In

p
u

t
T

im
e

 (
m

s
)

2

4

6

8

10
Servers

(b) Server’s input data and timing per server for a different number n of users’.

Figure 50: User and server’s bandwidth and computation time performance.

As represented in Fig. 51b, the verification algorithm Ver has input data size propor-
tional to the number µ of servers used in the verification. By considering the maximum
verification set possible, Ver’s execution time increases quadratically in the number of
users and servers. In Fig. 51a, we observe that the optimal choice for µ is always
µ = t + 1. This is true because, for every µ ∈ [t + 1,m], a successful verification re-

164 Paper G - Non-Interactive, Secure Verifiable Aggregation for Decentralized, Privacy-Preserving Learning

quires (1) µ checks of the form of Eq. (28); and (2)
(
µ
t+1

)
calls to SS.Recon. The first

is proportional w.r.t. the parameters n and µ, but it does not depend on t, while the
latter has a maximal number of calls whenever µ is near the integer 2(t + 1). This
consideration suggests that it is optimal to minimise the verification set size µ to be
µ = t+1. Additionally, the optimized verification algorithm OptVer of Corollary 3 is
always faster than Ver, due to the reduced amount of multiplications required during
the verification of Eq. (28).

10

15

20

25

30

35

2 4 6 8 10

M size Mu

V
e

ri
fi
c
a

ti
o

n
 D

a
ta

 (
k
B

)

0

5

10

15

20

25

30

35

40

45

50

55

2 4 6 8 10

Servers

V
e

ri
fi
c
a

ti
o

n
 T

im
e

 (
m

s
)

100

200

300

400

500
Users

(a) Ver input data size and computation time for a different number n of users,
verification set’s size µ and amount of servers m.

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80

1 2 3 4 5 6 7 8 9

Threshold t

V
e

ri
fi
c
a

ti
o

n
 T

im
e

 (
m

s
)

2

4

6

8

10
M size mu

0

10

20

30

40

50

2 3 4 5 6 7 8 9 10

M size mu

V
e

ri
fi
c
a

ti
o

n
 t

im
e

 (
m

s
) Algorithm

OptVer

Ver

(b) Ver’s computation time for different µ and t and comparison between Ver and
OptVer’s computation time for different µ (t = 1).

Figure 51: Communication cost and execution time for Ver and OptVer.

4.1 Comparison to Related Work

We compare the performance of our solution with Segal et al.’s PPML [BIK+17] and
Xu et al.’s VerifyNet [XLL+20] protocols. Segal et al.’s results are obtained from a Java
implementation running on a Intel Xeon E5-1650 v3 CPU @ 3.50GHz, with 32 GB of
RAM while, the server-side computations, Xu et al.’s are obtained from an Intel Xeon
E5-2620 CPU @ 2.10GHz, 16GB RAM on the Ubuntu 18.04 operating system. Both of
them have not publicly released their implementations, thus, making it hard to fairly
compare the computation times. Additionally, since the considered related works are
designed as interactive protocols, we can only compare total bandwidth/execution time
and we will mainly focus on the user’s and verification algorithm performance metrics
since, in the FL scenario, the server enjoys high computational power.

In both the PPML and VerifyNet experiments, the users provide secret vectors of
length K as input to the aggregation protocol and, additionally, the entries of the
vector might be of small size, e.g. our implementation represents an integer with B =
36 bytes, while the vector entries considered in the PPML protocol are b = 3 bytes
long. To fairly compare, we repeatedly execute NIVA K b

B
times in order to achieve the

same amount of aggregated value bytes. In other words, we simulate the packing of

Implementation and Comparisons 165

a vector of small integers into a single bigger integer, as described in the VerifyNet’s
implementation [XLL+20]. PPML assumes that the vector entries are of length b = 3
bytes, while VerifyNet was tested on entries of the same size B as NIVA. Since NIVA is
the only decentralized primitive compared, we test it at the minimal distributed setting
possible, i.e. m = 2 servers both needed for the reconstruction, or threshold t = 1.

VerifyNet uses as standard vector size K = 1000. Fig. 53a depicts that NIVA is
more space efficient than VerifyNet whenever introducing a larger amount of users.
Furthermore, NIVA requires a lower amount of users’ data than VerifyNet. We should
note though that whenever increasing the vector size K, it must be observed that NIVA
has a slightly steeper angle, which means that there exists a vector size k̂ from which
VerifyNet becomes more efficient than NIVA. Differently, Fig. 53c collects the required
user execution (computation) time in which NIVA results to be always more efficienct
than VerifyNet.

PPML is defined with a standard vector of size K = 105, 100 times bigger than
VerifyNet, and does not achieve the verification of the aggregated output. Additionally,
each vector entry is described with b = 3 bytes, 12 times smaller than NIVA’s input.
As shown in Fig. 53b and Fig. 53d, our primitive seems to never be able to compete
with the PPML protocol because of the elevated value K. PPML’s protocol minimizes
the communication cost, thus the execution time, for bigger vector sizes K, while it
is linearly dependent on the number of users. In contrast, NIVA has a fixed user’s
communication cost that only depends on the vector size K and the amount of servers
m. For this reason, we consider K = 105 and extrapolate the PPML’s linear dependency
between data and users n. We observe that NIVA overtakes PPML regarding both the
user’s execution time and the communicated data whenever the user size is ∼104.

2500

3000

3500

4000

4500

5000

5000 7500 10000 12500 15000

Users

U
s
e

r
D

a
ta

 O
u

t
(k

B
)

15000

20000

25000

30000

35000

40000

5000 7500 10000 12500 15000

Users

U
s
e

r
T

im
e

 (
m

s
) PPML

Our Primitive

Figure 52: Extrapolated user’s data usage and execution time for PPML and NIVA with
fixed vector size K = 105.

This allows us to conclude that NIVA is better suited than both PPML and Veri-
fyNet for scenarios where the number of users n that participate in a FL model aggreg-
ation/update is substantial, i.e. over 105. For example, we have simulated a scenario
where n = 105 users participate with a limited vector of K = 1000 entries of b = 3
bytes each and found out that NIVA has a constant user communication cost of∼43.33kB
and execution time of ∼282.5ms. In comparison and with the same hypothesis used for
Fig. 52, PPML would require each user to communicate ∼31.55MB for a total of ∼4.33
minutes putting it over 3 order of magnitude worse than NIVA. Of course, NIVA’s serv-
ers have a higher computational demand. In our experiments, each server took ∼106.56
hours to handle ∼4.00GB of data and the verification algorithm required ∼573.33MB
of data from users and servers and was executed in ∼25.33 s. The reason for this high
cost is the necessity to re-execute the primitive K · b

B
times. This can be overcome by,

for example, increasing B, thus, considering a key agreement based on very-big cyclic
groups G, such as an elliptic curve over a finite field of 512 bits which should allow to

166 Paper G - Non-Interactive, Secure Verifiable Aggregation for Decentralized, Privacy-Preserving Learning

0

10000

20000

30000

40000

50000

60000

70000

100 200 300 400 500

Users

U
s
e

r
D

a
ta

 O
u

t
(k

B
)

VerifyNet

Our Primitive

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1000 1500 2000 2500 3000 3500 4000 4500 5000

Vector Size

U
s
e

r
D

a
ta

 O
u

t
(k

B
)

(a) User’s data cost comparison between VerifyNet and NIVA for fixed vector size
K = 1000 and number of users n = 100.

0

1000

2000

3000

4000

5000

100 200 300 400 500

Users

U
s
e

r
D

a
ta

 O
u

t
(k

B
)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

1e+05 2e+05 3e+05 4e+05 5e+05

Vector Size

U
s
e

r
D

a
ta

 O
u

t
(k

B
)

PPML

Our Primitive

(b) User’s data cost comparison between PPML and NIVA for fixed vector size
K = 105 and number of users n = 500

5000

7500

10000

12500

15000

17500

20000

100 200 300 400 500

Users

U
s
e

r
D

a
ta

 T
im

e
 (

m
s
)

10000

20000

30000

40000

50000

60000

70000

80000

90000

1000 1500 2000 2500 3000 3500 4000 4500 5000

Vector Size

U
s
e

r
T

im
e

 (
m

s
) VerifyNet

Our Primitive

(c) Timing comparison between VerifyNet and NIVA for fixed vector size K = 1000
and number of users n = 100.

0

5000

10000

15000

20000

25000

30000

35000

100 200 300 400 500

Users

U
s
e

r
D

a
ta

 T
im

e
 (

m
s
)

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000
110000
120000
130000
140000
150000

1e+05 2e+05 3e+05 4e+05 5e+05

Vector Size

U
s
e

r
T

im
e

 (
m

s
) PPML

Our Primitive

(d) Timing comparison between PPML and NIVA for fixed vector size K = 105

and number of users n = 500.

Figure 53: Data and time comparisons between PPML, VerifyNet and NIVA.

Implementation and Comparisons 167

almost double B from 36 to 64. It remains open if it is possible to extend NIVA to work
more efficiently with vectors as secret inputs.

Turn Based Communication Channel

Carlo Brunetta1, Mario Larangeira2, Bei Liang3, Aikaterini Mitrokotsa1 and
Keisuke Tanaka2

1 Chalmers University of Technology, Gothenburg, Sweden
2 Department of Mathematical and Computing Sciences, School of Computing, Tokyo

Institute of Technology, Tokyo, Japan
3 Beijing Institute of Mathematical Sciences and Applications, Beijing, China

Under Submission

Paper H - Turn Based Communication Channel 171

Abstract: We introduce the concept of turn-based communication channel between
two mutually distrustful parties with communication consistency, i.e. both parties have
the same message history, and happens in sets of exchanged messages across a limited
number of turns. Our construction leverages on timed primitives. Namely, we introduce
a novel ∆-delay hash function definition in order to establish turns in the channel. Con-
cretely, we introduce the one-way turn-based communication scheme and the two-way
turn-based communication protocol and provide a concrete instantiation that achieves
communication consistency.

Keywords: Time Puzzle, Delay, Hash Function, Consistency

172 Paper H - Turn Based Communication Channel

1 Introduction

Communication channels are the core mediums allowing different parties to build dia-
logues. They can either be physical or abstract, e.g. electromagnetic wave propagation
or a key exchange protocol that allows to establish a secure communication channel.
Either the case, channels achieve different properties which can be related to the me-
dium, e.g. reliability, energy efficiency, bandwidth, or based on the “content”, e.g. con-
fidentiality, privacy or other. A fundamental and highly desirable property of a channel
is consistency, i.e. different parties exchange messages which cannot be modified or
repudiated in the future once the communication is over. In other words, whenever a
message is shared, it is permanently fixed in the transcription. An example of a pro-
tocol that allows such a property is the public bulletin board which allows any party
to publish any information on the “board”, while receiving a “proof” that guarantees
the integrity that the information is indeed published. Recently, blockchains, or public
ledgers [BGM16, KRDO17], have emerged as complex protocols that allow the instan-
tiation of a public bulletin board, without relying on a central authority.

Their security relies on a specially purposed consensus protocol, which often requires
assumptions of game-theoretic nature, e.g. the proof-of-work consensus protocol implies
that an adversary does not have more than 51% of the available computing power at
its disposal. Bulletin boards based on consensus protocols, albeit practical, suffer from
significant delays when persisting entries. Notably, blockchain-based systems, typically
suffer from scalability issues without a clear solution yet. Consequently, for time critical
systems, blockchain-based bulletin boards may not be a useful alternative. An emerging
technology, autonomous driving, illustrates the challenge between time-critical systems
and blockchains. Autonomous driving in a real-world environment is a notoriously
hard task because of the high number of variables that must be taken into account.
Moreover, in such systems, communication between cars is a viable design approach.
Different systems must communicate and coherently agree on their action plans.

Let us consider a simplified example where a car is overtaking another one. The
one taking the action and surrounding cars must securely execute their algorithms while
communicating to each other. All the communication between the cars should be timely
available and guaranteed to be correct, i.e. could not be changed a posteriori, for audit
purposes. The transcript of the whole communication could be used later, or even
in court, for legal issues. A straightforward approach is to let vehicles be equipped
with cryptographic primitives, such as digital signatures. Despite its feasibility, the aid
of public key cryptography may not be an option in for some devices, in particular,
resource restricted ones. Besides, it may require the use of Public Key Infrastructure
(PKI) which may be, again, prohibitive for some systems.

One of the most basic building blocks in cryptographic literature are hash functions.
They are used to guarantee data integrity and are widely employed in the computer sci-
ence discipline in numerous applications. A natural question is whether such a building
block would allow the construction of a pair-wise communication channel, avoiding the
somewhat heavier cryptographic primitives earlier cited. An application relying only
on hash functions could be significantly “easier”, since it would not be aided by pub-
lic key cryptography schemes with PKI, typically more “complex” than their private
key cryptography counterpart. Furthermore, it could also sidestep the early mentioned
limitations of blockchain based protocols, yet providing a consistent and timely com-
munication channel between two users. More succinctly, we investigate the following
question:

is it possible to design a consistent channel between two parties without using
blockchain’s assumptions nor public key infrastructure?

Introduction 173

Next, we detail the main approach of our idea which is to devise a “turn”, such that
messages are exchanged only within the turns, and the proofs of submitted messages,
similary to a bulletin board, are generated in order to guarantee consistency. The set of
all turns of the channel, i.e. it contains a finite number of them are purposely related to
each other. Therefore, they are not easily altered without affecting the overall transcript
proofs of the exchanged communication.

Concept’s Overview. All the communication is held over time which allows to order
events during communication, e.g. message exchange. Commonly, our daily interac-
tion is held over continuous communication channels in which the communicating
parties can communicate at any point in time.

Our main idea, as depicted in Fig. 54, relies on providing a turn-based commu-
nication channel (TBCC) that forces the two parties to communicate in a limited
amount of distinct turns separated by a ∆ time interval. The interaction between the
parties is slowed down by the necessity of waiting for the next turn, contrary to the
almost-instantaneous reply ability of continuous channels.

Time

C
on

ti
nu

ou
s

T
BC

C

Alice

Bob

Charlie ∆ ∆

Figure 54: A continuous and TBCC channel, the messages are gathered in “blocks”, and
each block, and its set of messages, is confirmed only at the end of each turn.

To do so, we assume the existence of functions that “computationally” create time
delays and are used to extend the hash function definition and introduce the ∆-delay
hash function, which paves the way to the construction of time-lock puzzles in the
spirit of Mahmoody et al. [MMV11], i.e. a primitive that allows Alice PA to generate
a puzzle-solution pair (y, π), send the puzzle y to Bob PB that spends a time ∆ to
compute the solution π. Concretely, ∆ is the turn interval in our TBCC construction.
The novel feature provided by TBCC is that PA knows the solution π in advance and
can use it to “commit” to a message m. By releasing m and the puzzle y, PB must
invest ∆ amount of time in computing π before being able to verify the validity of m.
The early described timed-commitment is the stepping stone of our first construction for
a one-way turn-based scheme that allows the communication of blocks of messages
in turns in a single direction, e.g. from PA to PB . We show that if the one-way turn-
based scheme is correct and tamper resistant, i.e. the adversary is unable to modify the
past communication and/or the correctness of the exchanged messages, intuitively this
yields to communication consistency, i.e. both parties have the same view of the
exchanged messages even if the adversary delays/tampers any message. We define the
two-way TBCC protocol as a “two one-way scheme” which allows a simpler exten-
sion of the properties to the protocol, i.e. correctness, tamper resistance, sequentiality
and consistency. Additionally, we introduce the concept of turn synchronisation,

174 Paper H - Turn Based Communication Channel

i.e. the two communicating parties must always agree in which shared turn they are
communicating. The protocol can further provide a recovery procedure that allows
the communicating parties to fix the last-turn messages in case of a communication
error or an adversarial tamper. We summarise our ideas and contributions in Fig. 55.

Time
Assumption

One-way
Hash

∆-Delay
Hash

Mahmoody
TLP [MMV11]

Time-Lock
Puzzle

Message

Solve
Puzzle

Correct
message?

Valid!

Puzzle

∆

One-Way SchemeTwo-Way Protocol

Figure 55: Roadmap of our contributions where we depict in gray the common assump-
tion and definitions, in green our assumptions and basic primitives, in purple our main
idea and construction and in blue our main contributions.

1.1 Related Work

Blockchains and Bulletin Boards. The blockchain data structure is commonly used
in a distributed environment, where cryptographic primitives intersect with game the-
oretical assumptions in order to create a distributed database, where consistency comes
for the orderly generation of blocks added to the structure. In the literature there are
many examples of either using blockchains as a building block with new primitives,
e.g. public verifiable proofs [SSV19], or applying existing cryptographic primitives into
blockchains in order to achieve new functionalities [BBF19, KMS14]. Other focus is ded-
icated to the theoretical aspects related to the consensus mechanism or the blockchains’
theoretical model [GKL15].

Time and Cryptographic Primitives. Cryptography and timing are long time
distinct aspects that are commonly not considered together. Rivest et al. [RSW96]
described the possibility of using time to create a cryptographic time-capsule, i.e. a
ciphertext that will be possible to decrypt after a specified amount of time. Their work
defines the concept of time-lock puzzles, where timing is achieved by cleverly tweaking
the security parameters of some secure cryptographic primitives, e.g. choose a specific
parameter λ such that the computational complexity of a specific problem is solvable by
a real machine in reasonable time. Boneh et al. [BN00] presented the concept of timed
commitments, i.e. a commitment scheme in which at any point, by investing an amount
of effort, it is possible to correctly decommit into the original message. The main con-
ceptual difference with respect to previous works is that, in this work, timing properties
are achieved by forcing the algorithm to compute a naturally sequential mathematical
problem. From a different perspective, Mahmoody et al. [MMV11] defined time-lock
puzzles by just assuming the existence of timed primitives.

In the last years, many community efforts are spent into the definition of verifiable
delay functions (VDFs), i.e. to compute a timed function and be able to verify the
correct computation of it. There are multiple instantiations of this primitive in the
literature, e.g. Lenstra et al.’s random zoo [LW15], a construction using randomized
encoding by Bitansky et al. [BGJ+16] or Alwen-Tackmann’s theoretical consideration
regarding moderately hard functions [AT17]. The VDF’s formal definition is given by
Boneh et al. [BBBF18], subsequent papers provide additional properties for these time

2. PRELIMINARIES 175

related primitives such as Malavolta-Thyagarajan’s homomorphic time-puzzles [MT19]
or the down-to-earth VDF instantiation by Wesolowski [Wes19].

Timing Model. Perhaps the closest set of works to our study deals with the Timing
Model as introduced by Dwork et al. [DNS04], and used by Kalai et al. [KLP07]. While
they do present similarities to our work, e.g. the idea of “individual clock", they also
present significant differences. For instance, while in [DNS04, KLP07] every party in
the real execution is equipped with a “clock tape", extending the Interactive Turing
Machine (ITM) with clocks, in our model the parties are regular ITMs, that perform
computations in order to realize a “single clock" used by the ideal functionality. Ad-
ditionally, our work also shares similarities with Azar et al. [AGP16] work on ordered
MPC, which studies delays and ordered messages in the context of MPC. Our frame-
work is positioned between both models as it focuses on turns equipped with a message
validating mechanism, which is a different approach.

Recently, a concurrent and theoretical work by Baum et al. [BDD+20] formalizes the
security of time-lock puzzles in the UC framework. More concretely they introduce the
UC with Relative Time (RUC), which allows modelling relative delays in communication
and sequential computation without requiring parties to keep track of a clock, in contrast
to Katz et al.’s [KMTZ13] approach which models a “central clock” that all parties have
access. The main contribution introduces a semi-synchronous message transmission
functionality in which the adversary is aware of a delay ∆ used to schedule the message
exchanges, while the honest parties are not aware. In their work, composable time-
puzzle realizes such novel functionality, and yields UC secure fair coin flips and two
party computation achieving the notion of output independent abort. They focused on
composable primitives and therefore have to rely on a constrained environment, i.e. it
has to signal the adversary and activate every party at least once. Another theoretical
difference is the focus of the order and turns but not in relative delays as in [BDD+20].

Baum et al. state as future work a possible extension to their transmission model
in which all the parties have a local clock that would allow to always terminate any
protocol. Our paper tackles that extension and provides a tangible instantiation of the
extended model.

Paper Organisation. Sec. 2 states the preliminaries and time-complexity assumption.
Sec. 3 defines the one-way and two-way TBCC protocol and related properties. Sec. 4
presents a collectively flip-coin protocol between two parties.

2 Preliminaries

In this section, we present notations and assumptions used throughout the paper.
We denote vectors with bold font, e.g. v, and Pr [E] the probability of the event E.

Let {0, 1}∗ be the binary strings space of arbitrary length, N the natural numbers, R
the real numbers and R+ the positive ones. Let [a, b] denote intervals between a and b
and x←RX the random uniform sampling in the set X. Let negl(λ) denote a negligible
function in λ, i.e. negl(λ) = O(λ−c) for every constant c > 0. We omit λ whenever
obvious by the context.

Definition 40 (One-Way Hash Function [KL08]). Let n ∈ N. The function H :
{0, 1}∗ → {0, 1}n is a one-way hash function if it satisfies the properties:

• Preimage resistance: for any x←R{0, 1}∗ and y := H(x), for any PPT ad-
versary A that, on input y, outputs x′, it holds that Pr [H(x′) = y] < negl;

• 2nd Preimage resistance: for any x←R{0, 1}∗, y := H(x), for any PPT ad-
versary A that, on input x, outputs x′ ̸= x, it holds Pr [H(x′) = y] < negl;

176 Paper H - Turn Based Communication Channel

Complexity and Time. Let time be modelled as the positive real numbers R+. At
the core of our construction, we must assume the existence of a measure µ (·) that plays
the role of a “bridge” between complexity and timing. Formally,

Assumption 7. Given a model of computation M, there exists a measure µ (·) that
takes as input anM-computable function f with input x and outputs the amount of time
µ (f , x) ∈ R+ necessary to compute f (x) in the model M. If f ⋆(x) is a probabilistic
function with input x and internal randomness r, then there exists f (x; r) deterministic
function that executes f ⋆(x) with fixed randomness r.

Informally, given a model of computation, e.g. Turing machines, quantum com-
puters, “pen-and-paper”, it is possible to measure “how much time does it take” to
compute f (x) both in the cases when f is deterministic or probabilistic14.

Another required assumption is the existence of a function family F of which func-
tions always output the results after the same amount of time. Formally,

Assumption 8. Given a model of computation M and associated µ (·), there exists a
function family F such that for any function f ∈ F , for any inputs x, x′, f is input-
independent with computing time µ (f), i.e. µ (f) = µ (f , x) = µ (f , x′).

Through the remaining of this work, we consider timing as the output of µ (·) applied
on input-independent functions. Whenever not specified, a hard problem is a problem
of which solution, computed via f , has large computation time µ (f).

The timed one-way hash function extends the hash’s properties of Def. 40.

Definition 41 (∆-Delay One-Way Hash Function). Let n ∈ N. The function H :
{0, 1}∗ → {0, 1}n is a ∆-delay one-way hash function if it is input-independent as
described in Assumption 8 and, in addition to the properties of Def. 40, the following
property also holds:

• ∆-Delay: for any PPT adversary A that takes an input x and outputs y which
runs in time µ (A, x)<∆=µ

(
H
)
, it holds that Pr

[
y = H(x)

]
<negl.

Observe that, in order for the ∆-delay’s property to make sense, the length of x might
require to be limited, e.g. x must be polynomial. We omit such detail and always
consider delay hash functions with the appropriate input space size.

Define the time-lock puzzle (TLP) as a generate-solve algorithm pair in which time
plays a design/security aspect. Our definition is inspired by Azar et al. [AGP16] and,
more specifically, we consider the construction presented by Mahmoody et al.’s [MMV11]
in the random oracle (RO) model. The provided TLP generates m+1 sequential puzzles,
i.e. a list of partial puzzle yi of which partial solution πi is necessary in order to
solve the next partial puzzle yi+1.

Definition 42 (Time-Lock Puzzle). Let m ∈ N, security parameter λ and ∆ ∈ R+

be the desired time delay. Let H : {0, 1}∗ → {0, 1}n be a ∆-delay hash function for
some n ∈ N. Let the algorithms (GenPuz, SolPuz) define a (m∆) time-lock puzzle
(m∆-TLP) as:

• GenPuz(λ, (m,∆))→ (y, π): the generation algorithm randomly samples m+1 bit-
strings xi ∈ {0, 1}n and it computes the hash H(xi) for i ∈ [0,m]. The algorithm
outputs the list of partial puzzles and partial solutions:

(y, π) :=
((
x0,H(x0)⊕ x1, ... ,H(xm−1)⊕ xm

)
, (x0, x1, ... , xm)

)
;

14Observe that the same computational problem might have different timing, e.g. solving a classic-
secure discrete logarithm instance is infeasible on a classical computer while it is theoretically feasible
on a quantum computer.

3. INSTANTIATING THE TURN BASED COMMUNICATION CHANNEL 177

• SolPuz(y, k, (π0, ... , πk−1)) → πk: the algorithm parses y into (y0, y1, · · · , ym),
k ∈ [1,m] and the known partial solutions (π0, ... , πk). It then outputs the partial
solution πk := yk ⊕ H(πk−1) where π0 := y0.

The following three properties must hold:

• Correctness: for every delay ∆, security parameter λ and m,n ∈ N, for every
puzzle (y, π) � GenPuz(λ, (m,∆)), for every k ∈ [1,m], it holds that

Pr [SolPuz(y, k, (π0, ... , πk−1))=πk] = 1

• Timing: for every delay ∆, security parameter λ and values m,n ∈ N, for every
puzzle (y, π) � GenPuz(λ, (m,∆)), for every k ∈ [1,m] it holds that µ (SolPuz) =
∆ and generating the puzzle is faster than solving it, i.e.

µ (GenPuz) ≤ m · µ (SolPuz)

• Locking: for every delay ∆, security parameter λ and values m,n ∈ N, for every
puzzle (y, π) � GenPuz(λ, (m,∆)), for every k ∈ [1,m] and adversary A that solves
the k-th partial puzzle, i.e. A(y, k, (π0, ... , πk−1)) = πk, it holds that µ (A) < ∆
with only negligible probability.

The (m∆)-TLP describes a sequence of sequential puzzles that must be solved one
at a time. The timing property guarantees that the SolPuz algorithm requires a specific
∆ amount of time to be executed and that generating the whole puzzle takes less time
than solving all the m puzzles. The locking property guarantees that any adversary A
is unable to solve the partial puzzle in less time than ∆ which implies, intuitively, that
SolPuz is the most optimised algorithm for solving the partial puzzle yi. If a better
solving algorithm SolPuz′ exists with solving time ∆′ < ∆, then (GenPuz, SolPuz′) is a
(m∆′)-TLP while (GenPuz,SolPuz) cannot satisfy the locking property.

3 Instantiating the Turn Based Communication Channel

In this section, we discuss the core concepts of timed disclosure, turns block and
communication consistency, later used to fully instantiate one and two-way TBCC,
from a time-lock puzzle based on a ∆-delay hash function.

Timed Disclosure and Message Block. Consider a ∆-delay hash function and the
related time-lock puzzle (y, π) as defined in Def. 42. Alice generates and publishes the
puzzle y. On receiving y, Bob starts solving it. Within the amount of time ∆, only Alice
knows the solution π, which allows her to produce an efficient digest ξ = H(m, π) for
any message m that she wants to communicate with Bob. At this stage, Bob is unable
to compute the same digest because he does not know π. The “timed disclosure” is
achieved whenever Bob finds the solution π which enables him to accept or reject
the previously received message by verifying the correctness of the digest ξ. Timing
is key for the security of the disclosure: Alice must use the knowledge before it is
disclosed and, on the other hand, Bob should reject anything that uses such secret
after the disclosure. Differently, only after ∆ time, Bob can check which are the
correct messages that are blinded to the specific solution π and can collect them into
a turn block. Whenever we consider that Alice can publish a sequential time-lock
puzzle in which one partial solution πi is the starting point for the next partial puzzle
yi+1, Bob must filter and accept the received messages into a block every ∆ amount of
time therefore creating the concept of turns and relative message blocks. This turn
point-of-view is possible because of the sequential timed disclosure that can be seen
as a “clock that ticks” every ∆ amount of time. This means that the communication is

178 Paper H - Turn Based Communication Channel

one-way, from Alice to Bob. Alice does not see the turn because all the partial solutions
are known to her and therefore she is able to generate any possible message-digest pair
at any time, see Fig. 56.

Time

Alice

Bob

Bob’s Vision ∆ ∆

Figure 56: One-way channel scheme representation. Alice shares a time-lock puzzle with
Bob and then sends messages of which some are correctly binded with the next puzzle’s
partial solution. With that solution, Bob is able to filter out the correct messages. Since
this is done every ∆ time, in Bob’s eyes is as if he is receiving messages in turns.

Block of Messages and Communication Consistency. The next step is to create
a two-way communication between Alice and Bob by allowing them to instantiate two
independent one-way TBCC channels between each other, i.e. by exchanging time-lock
puzzles and communicating message-digest pairs that are accepted and personally saved
in blocks. These blocks are not stored in a trusted third party service but Alice and
Bob have their own local copy of the exchanged message history and this means that
it is required to provide a procedure to guarantee consistency between the copies.
Consider our communicating Alice and Bob to be in the i-th turn, i.e. at the end of the
turn they will create the i-th block. Naively, to achieve consistency of all blocks, every
message, of the current block, should be bound to the previous and future block. For
the previous block, they include a digest hi−1 of the previous block in every message
they share in order to correctly verify that both have the same previous block vision.
When the i-th turn ends, they separately create their own block-vision which could be
different. When they enter the (i+1)-th turn, they will have to share the previous block
digest hi and they will see that the values are different. They will therefore start a
recovery phase by publishing the content of the i-th block. At this point in time, the
message’s digest ξi can be tampered by anyone since the partial solution πi is publicly
known. For this reason, for every message we define a second digest σi that binds such
message with the next turn/future block solution πi+1. This procedure allows every
party to understand “who is cheating” or “where the errors are”. In this way it is
possible to abort the communication at any point in time, whenever a malicious party
hijacks the channel. All the parties are thus forced to honestly participate if they want
to maintain the channel up.

3.1 One-Way TBCC Instantiation

In this section, we instantiate the turn-based one-way channel from Alice to Bob. A
“channel” is any collection of parameters that allows to participate into the communic-

Instantiating the Turn Based Communication Channel 179

ation, e.g. whenever a list of parameters is published, anyone can use them to correctly
parse future messages shared using them.

Definition 43. The one-way channel scheme is defined with the PPT algorithms
(setup, send, ext, turntoken, valid-ver, tamper-ver) as:

• setup(λ,∆, n) → (C, Cpriv): to setup the communication channel, PA parses the
security parameter λ, the delay ∆ and the number of turns n The setup algorithm
outputs the public and private channels (C, Cpriv);

• send(Cpriv,m, v, t) → (ξ, aux): the send-message algorithm takes in input the
private channel information Cpriv, a message m with validity v ∈{0,1} and the
turn t < n. The algorithm outputs the message correctness proof ξ and the chan-
nel auxiliary information aux.

• turntoken(C, t, {x0, ... , xt−1}) → xt: this algorithm is executed at the beginning
of turn t. The algorithm parses the channel C, the current turn t and the set
of previously computed turn tokens {x0, ... , xt−1}, after ∆ amount of time, the
algorithm outputs the turn token xt.

• valid-ver(C, t,m, ξ, xt)→ {0, 1}: at the end of the t-th turn, the validity verification
takes as input a message m and its proof ξ and the turn token xt. The algorithm
outputs the validity v for the sent message m with proof ξ;

• tamper-ver(C, t,Mt−1,m, aux, ξ)→ {0, 1}: during the t-th turn, the tamper verific-
ation algorithm takes in input the public channel C, the current turn t, the ordered
block of messages Mt−1 which is the list of valid messages for the turn t−1, a sent
message m with proof ξ and auxiliary information aux. The algorithm verifies if
the sent message m correctly relates to the previously sent messages contained in
the block Mt−1, thus outputting 1 when this is achieved, otherwise 0.

• ext(C, Cpriv, t)→ xt: the extraction algorithm takes as input the public channel C,
the private channel Cpriv and a turn t ≤ n and outputs the turn token xt, without
investing any multiple of ∆ time;

• backward-ver(C, t,Mt−1, l)→ {0, 1}: the recovery algorithm takes as input the pub-
lic channel C, the current turn t, the previous ordered block Mt−1 of bt−1 = |Mt−1|
valid messages mi and an index l ∈ [1, bt−1]. The algorithm outputs if the l-th
message m⋆ in the block Mt−1 is a correct message for the block Mt−1 at the end
of turn t.

Let us explain how the definition is used to generate a communication channel from
Alice PA to Bob PB , as depicted in Fig. 57. First, PA executes setup for an agreed delay
∆ and amount of turns n, and obtains the channels (C, Cpriv), e.g. the public channel
C can consist of PA’s public key and public parameters while the private channel Cpriv
contains PA’s private key. The knowledge of Cpriv allows PA to quickly compute each
turn token xt directly as ext(C, Cpriv, t) while PB must sequentially compute them as
turntoken(C, t, {x0, ... , xt−1}) and obtain them every ∆ amount of time, similarly to
a periodic scheduling process. Whenever PA sends the message m in a turn t, she
executes send for a valid message in the t turn and sends to PB the tuple (m, ξ, aux).
PB can execute valid-ver(C, t,m, ξ, xt) and verify the message validity only whenever PB
obtains the turn token xt, computable only after t·∆ amount of time. This allows PA
to communicate several messages of which PB cannot immediately verify the validity
of m but it has to wait for turntoken to output the specific turn token xt thus creating
the view of turns of the channel.

Message Validity. The sender’s inputs are the validity value v, a bit which indicates
if the message is considered valid or not, along with the message m itself and the choice
of turn t. Only when the turn t ends, the receiver can verify the validity of the message
via the valid-ver algorithm and the turn token xt.

180 Paper H - Turn Based Communication Channel

Time

setup

C Cpriv

C

tamper-ver tamper-ver

x1

x1

∆
x2

x2

∆
x3

x3

∆

turntoken

ext

Alice

Bob

send

inv
ali

d

valid-ver

send

va
lid

valid-ver

Figure 57: One-Way TBCC scheme usage: Alice submits the public channel C to Bob,
and keeps the private information Cpriv. On each end of turn, Bob verifies the received
messages in order to prevent the addition of invalid messages in the channel.

Definition 44 (Channel Correctness/Message Validity). Assume a turn t ≤ n in a n-
turn channel generated by the algorithms of Construction 1, then for all message/validity
pairs m and v, the channel is said to be correct if

Pr

valid-ver(C, t,m, ξ, xt) ̸= v

∣∣∣∣∣∣
setup(λ,∆, n)→ (C, Cpriv);
send(Cpriv,m, v, t)→ (ξ, aux);
ext(C, Cpriv, t)→ xt;

 ≤ negl(λ) ,

with probability computed over the random coins of setup, send, ext and valid-ver.

Sequentiality and Turn Definition. The turns of the channel rely on the time
necessary to compute the token values xt via turntoken, defined in the channel C during
the general setup. Each computed turn-tokens xt, allows the receiver to verify the
validity and consistency of all received messages during the turn t, crucially, only at the
end of the turn after the expected delay time ∆.

Definition 45 (Sequentiality). The channel is ∆-sequential if for any turn t, for
any PPT adversary A running in time µ (A) < ∆, the adversary wins the game
GameA,∆seq (λ, t, n) of Algorithm 3, with negligible advantage, namely,∣∣∣∣Pr[GameA,∆seq (λ, t, n) = 1]− 1

2

∣∣∣∣ ≤ negl(λ) .

Algorithm 3 Sequentiality Game GameA,∆seq (λ, t, n) for the adversary A
1: Execute setup(λ,∆, n)→ (C, Cpriv);
2: Choose a random message m and validity v ← {0, 1}.
3: Execute ext(C, Cpriv, i)→ xi for i ∈ [1, t− 1] and send(Cpriv,m, v, t)→ (ξ, aux)
4: v∗ ← A

(
C, t,m, ξ, aux, {xi}t−1

i=1

)
5: Execute ext(C, Cpriv, t)→ xt
6: If valid-ver(C, t,m, ξ, xt) = v∗, output 1. Otherwise, 0

Last Turn Tamper Resistance. Given any t ≤ n of a TBCC with public setup
information C, define the block Mt−1 as the set of all jt−1 messages in the turn t−1

Instantiating the Turn Based Communication Channel 181

with respective auxiliary information aux1, ... , auxjt−1 and sent proof ξ1, ... , ξjt−1 . The
algorithm tamper-ver(C, t,Mt−1,m, aux, ξ) checks, for any correctly computed message
(m, aux, ξ) ∈ Mt, if it correctly relates to the previous turn block Mt−1 by spotting
whenever this connection is tampered.

Definition 46 (Last Turn Tamper Resistance). During the turn t ≤ n of a channel C
between two honest parties with correct message blocks Mi for each turn 1 ≤ i < t, C is
tamper resistant, if for any PPT adversary A, it holds

Pr
[

tamper-ver(C, t,M⋆
t−1,m⋆, aux⋆, ξ⋆) = 1|

(M⋆
t−1,m⋆, aux⋆, ξ⋆)← A(C, t,M1, ... ,Mt−1)

]
≤ negl(λ)

such that M⋆
t−1 ̸= Mt−1 and tamper-ver(C, t,Mt−1,m⋆, aux⋆, ξ⋆) = 1. The probability is

computed over the random coins of A and algorithm tamper-ver.

Remark 14. Def. 46 is strictly dependent on the current turn being t, in the sense
that it does not deal directly with tampering of messages in earlier turns than t− 1. By
considering the definition for 1 ≤ t ≤ n, it covers all the turns for the channel, except
the n-th turn creating the last message tamper that will not be possible to verify
because there are “no more turns”, i.e. the computation turntoken(C, n + 1, {xi}ni=0) is
not defined or the result must not be used.

Communication Consistency. For any turn t ≤ n of a one-way channel C, the
channel is consistent until turn t−1 whenever the valid messages view between the
parties is the same during the turn t, i.e. an adversary must not be able to force a
wrong message history, regardless if it is the sender or the receiver.

Definition 47 (Consistency). During turn t ≤ n of a one-way TBCC channel C between
two parties with correct message blocks Mi for each turn 1 ≤ i < t, the channel is
consistent until turn t−1, if for any PPT adversary A, it holds

Pr [tamper-ver(C, t,M⋆
t−1,m⋆, aux⋆, ξ⋆) = 1|

(M⋆
t−1,m⋆, aux⋆, ξ⋆)← A(C, t,M1, ... ,Mt−1)

]
≤ negl(λ)

such that M⋆
t−1 ̸= Mt−1, tamper-ver(C, t,Mt−1,m⋆, aux⋆, ξ⋆) = 1 and for all the messages

of the tampered block, along with auxiliary information and proof, i.e. (m⋆
ji , aux⋆ji , ξ

⋆
ji) ∈

M⋆
t−1, it holds valid-ver(C, t− 1,m⋆

ji , ξ
⋆
ji , xt−1) = 1 The probability is computed over the

random coins of A, tamper-ver and valid-ver.

3.2 One-Way Channel Instantiation.
Let ∆ ∈ R+ be a time-delay and n ∈ N a maximal turn number, both chosen by Alice,
denoted with PA. Let H and H be respectively regular and ∆-delay hash functions. Let
(GenPuz, SolPuz) be the (n∆)-TLP of Def. 42 based on H.

Construction 1. Let λ be the security parameter, n ∈ N number of turns, a sender PA
and a receiver PB. Instantiate the one-way channel scheme with the PPT algorithms
(setup, send, ext, turntoken, valid-ver, tamper-ver) defined as:

• setup(λ,∆, n) → (C, Cpriv): to setup the communication channel, PA parses the
security parameter λ, the delay ∆ and the number of turns n and executes the
algorithm GenPuz(λ, (n,∆)) as defined in Def. 42 and obtains the n turn puzzle
with solution (y, π). Output (C, Cpriv) as (y, π);

• send(Cpriv,m, v, t) → (ξ, aux): to send a message m with validity v in the turn
t < n, PA parses the private channel information Cpriv = π, and compute the
values ht−1 := H(Mt−1,m, πt−1), ξ := H(m, πt) and σ := H(m, ξ, πt+1) where Mt−1

182 Paper H - Turn Based Communication Channel

is the ordered list of valid messages in the turn (t − 1), together with validity
proof and auxiliary information. The sending algorithm outputs, if v = 1, the
message correctness proof ξ and the channel auxiliary information aux = (ht−1, σ),
otherwise random values (ξ, aux) different from the correct ones.

• turntoken(C, t, {x0, ... , xt−1}) → xt: this algorithm is executed by the receiver PB
at the beginning of turn t. It parses the channel C = y and continually executes
SolPuz(y) by considering that every πi := xi for the t partial solution. After ∆
amount of time, the output of the algorithm is xt := πt.

• valid-ver(C, t,m, ξ, xt)→ {0, 1}: at the end of the t-th turn, the validity verification
takes as input a message m and its proof ξ and the turn token xt = πt. Output 1

if the equality H(m, πt)
?
= ξ holds. Otherwise, 0;

• tamper-ver(C, t,Mt−1,m, aux, ξ) → {0, 1}: during the t-th turn, the receiver PB
verify the correctness of the ordered (t−1)-th block Mt−1 which contains the previ-
ously valid ordered messages {mi}

jt−1

i=1 for some jt−1 ∈ N, by parsing the auxiliary
information as aux = (ht−1, σ) and outputs the result of the equality verification
H(Mt−1,m, πt−1)

?
= ht−1.

• ext(C, Cpriv, t)→ xt: the extraction algorithm takes as input the public channel C,
the private channel Cpriv = π and a turn t ≤ n and outputs xt = πt;

• backward-ver(C, t,Mt−1, l)→ {0, 1}: the algorithm takes as input the public chan-
nel C, the current turn t, the previous ordered block Mt−1, of accepted message
mi for i ∈ [1, jt−1], and an index l such that m⋆ is the l-th message in the
block m⋆ = ml ∈ Mt−1 with auxiliary information aux⋆ = auxl = (ht−2

⋆, σ⋆).
backward-ver computes ξ⋆ = H(m⋆, πt−1) and outputs if H(m⋆, ξ⋆, πt)

?
= σ⋆. The

backward-ver algorithm verifies at the end of turn t if the message m⋆ is a correct
message for the block Mt−1.

Proposition 11. The proposed one-way channel instantiation of Construction 1 achieves
channel correctness as stated in Def. 44.

Proof. Consider a turn t ≤ n for an n-turn one-way channel defined by executing
(C, Cpriv) ← setup(λ,∆, n). For any message m with validity v, compute the value
send(Cpriv,m, v, t) → (ξ, (ht−1, σ)) of which ξ is either H(m, πt) if v=1 otherwise it is
an incorrect value. Furthermore execute ext(C, Cpriv, t) → πt. By definition, we have
that valid-ver(C, t,m, ξ, πt) outputs as validity the equality of H(m, πt)

?
= ξ which is 1,

when correctly computed, and 0 otherwise. Assume the existence of an adversary A
able to break the correctness property with some non-negligible probability ν > 0, i.e.
A is able to produce an invalid pair (m⋆, πt

⋆) such that valid-ver(C, t,m⋆, ξ, πt
⋆) = 1 for

some given digest ξ with probability ν. Let ϵH.pre be the assumed negligible probability
of finding a digest pre-image for H of ξ. Construct an adversary B that reduce the
pre-image computation to the one-way correctness by querying A for a pair (m⋆, πt

⋆)
for the digest ξ. B outputs as pre-image the value (m⋆, πt

⋆). We conclude that:

ν = Pr

valid-ver(C, t,m, ξ, xt) ̸= v

∣∣∣∣∣∣
setup(λ,∆, n)→ (C, Cpriv);
send(Cpriv,m, v, t)→ (ξ, aux);
ext(C, Cpriv, t)→ xt;

 ≤ ϵH.pre

which is absurd. Thus proving the correctness property.

Proposition 12. The proposed one-way channel instantiation of Construction 1 achieves
sequentiality as stated in Def. 45.

Proof. Consider the sequentiality game GameA,∆seq (λ, t, n) in which the challenger gener-
ates the communication channel (C, Cpriv) and let t ≤ n be an arbitrary turn in which

Instantiating the Turn Based Communication Channel 183

the adversary is challenged. The challenger chooses an arbitrary message m and validity
v ← {0, 1} and executes send(Cpriv,m, v, t)→ (ξ, aux). The adversary A wins the game
if the output v∗ ← A

(
C, t,m, ξ, aux, {xi}t−1

i=1

)
is the challenger’s chosen validity v and

the execution time for the adversary is bounded as µ (A) < ∆. A can therefore be
used by an adversary B to reduce the ∆-delay property for the ∆-delay hash function
to the one-way sequentiality game. Briefly, if we assume A to have a non-negligible
probability to compute v, B is able to break the ∆-delay property which is assumed to
be hard.

Proposition 13. The proposed one-way channel instantiation of Construction 1 achieves
last turn tamper resistance as stated in Def. 46.

Proof. Consider a communication between two honest parties to generate the blocks Mi

for i ∈ {1, ... , t−1} where t ≤ n is the turn in which the adversaryA will output the tuple
(M⋆,m⋆, (h⋆, σ⋆), ξ⋆), which contains a tampered block for the turn t − 1, a tampered
message and the related auxiliary information and the tampered validity proof. Ob-
serve that the verification algorithm will compute tamper-ver(C, t,Mt−1,m⋆, (h⋆, σ⋆), ξ⋆)
with the correct block, which will verify the equality of H(Mt−1,m⋆, πt−1)

?
= h⋆. Obvi-

ously, A can always generate, for any messages, correctly evaluated digests. However,
in order to correctly consider it a tamper, the adversarial tamper must verify the al-
gorithm with the tampered block. Then, to allow the existence of two correct but
different block visions, i.e. formally tamper-ver(C, t,M⋆,m⋆, (h⋆, σ⋆), ξ⋆), which is equi-
valent to H(M⋆,m⋆, πt−1)

?
= h⋆. Assume by absurd that such A exists and outputs

correct tampers with non-negligible probability ν > 0. Intuitively, construct an ad-
versary B that reduce the second pre-image computation to the one-way tampering
by querying A. A must provide a second pre-image (M⋆,m⋆) of the digest h⋆ obtained
from (Mt−1,m⋆). Thus, B outputs a second pre-image of h⋆ with probability ν ≤ ϵH.2pre
which is assumed to be negligible.

Proposition 14. Consistency ⇔ last turn tamper resistant and correctness.

Proof. The proof of this proposition is trivial. Our definition of consistency is similar to
the definition of tamper resistance where we additionally require the tampered block to
be formed only by correct messages. Therefore, a consistent channel is trivially correct
and tamper resistant. For the opposite implication, assume that the channel is non-
consistent, i.e. an adversary can compute a wrong message view in a specific turn. This
is true if and only if the adversary can create a correct tamper block which contains at
least a wrong message-proof ξ and auxiliary information tuple aux. This implies that a
non-consistent channel allows to break the correctness and tamper resistance property.

3.3 Two-Way TBCC

In this section, we instantiate a two-way TBCC and explain how to correctly realise
the recovery procedure, i.e. a procedure executed between the parties that allows them
to force the communication’s correctness and coherence.

Consider the parties PA and PB and let both independently setup the consistent
one-way channel of Construction 1 which casts them both as receiver and sender into
two independent channels each. Both parties can send a message to the other one in
the channel they created. Concurrently, each party keeps track of its local turn to
receive and check messages by (1) continuously executing turntoken and (2) keeping of
the previously generated turn tokens xi for i ≤ t.

184 Paper H - Turn Based Communication Channel

Protocol 3 (The Two-Way TBCC Protocol). Given two parties PA and PB, an integer
value n and real non-zero value ∆, define the (Two-Way) TBCC across n turns with
delay ∆ with the procedures:

• Setup: on input the security parameter λ, PA (respectively PB) executes the
algorithm setup(λ,∆, n), obtains (CA, CA,priv), and sends CA to PB, which replies
with CB. PA outputs the two-way TBCC channel information (CA, CB), along with
its respective private information Cpriv and PA performs turntoken(CB , 1, xB,0);

• Local Turn (analogously for PB): on receiving a call to this procedure, PA
returns the current local turn t corresponding to the last computed xPB ,t;

• Send Message (analogously for PB): on a given local turn t, when PA receives
the input (m, v), it executes send(CA,priv,m, v, t) → (ξ, aux) where the previous
block digest is computed as ht−1 := H(Mt−1,m, πPA

t−1, π
PB
t−1), and sends (m, ξ, aux)

to PB;
• Reveal Validity (analogously for PA): at the end of the local turn t, i.e. when

the algorithm turntoken(CA, t, {xA,0, ... , xA,t−1}) outputs the token xA,t, PB ex-
ecutes valid-ver(CA, t,mi, ξi, xA,t)→ vi, and outputs the block of both the parties
valid messages Mt={(mi, ξi, auxi)}i along with the turn token t whenever vi=1.
Furthermore, for all the messages mi, tamper-ver(CA, t,Mt−1,mi, auxi, ξi) is ex-
ecuted and if any result is 0, abort the communication. If t + 1 > n, then output
close and stop. Otherwise, execute turntoken(CA, t+ 1, {xA,0, ... , xA,t}).

Remark 15. The TBCC protocol naturally extends the one-way properties of correct-
ness and tamper resistance to the two-way channel. For example, if the two-way channel
is tamperable, it means the adversary can tamper at least one direction of the commu-
nication channel. In other words, tamper the one-way channel. Mutatis mutandis the
same is true for the correctness property.

Turn Synchronization and Consistency. When considering the two-way protocol
by instantiating two one-way turn based schemes, an additional problem that naturally
arises is turn synchronization between the parties. Consider the parties PA and PB
communicating using Proto. 3 which depends on the specific one-way channels CA and
CB . The specific channel turn is identified by the input of the algorithm turntoken
which are, almost surely, never synchronized, i.e. the outputs are disclosed in different
moments. This timing lack creates a problem in which a message m might be seen in
turn t by PA and in turn (t + 1) by PB . We capture this idea by formalizing the turn
synchronization property.

Definition 48 (Turn Synchronization). Let PA and PB be parties communicating over
the two-way TBCC. The TBCC channel (CA, CB) is turn-consistent if both players
have a unique and equal way to decide in which turn the message m belongs even then
the local turns of the two parties are different.

The TBCC without turn synchronization cannot achieve communication consistency
since the parties might disagree in which block M the message m belongs, making it
unlikely to create an unique communication history. Intuitively, achieving sequenti-
ality means that the turntoken algorithm is defining a “clock”, i.e. sequential “ticks”
distanced by some amount of time, while being desynchronized means that the parties
have “different clocks” where one of the two is always “late”. We prove that if we have a
sequential one-way scheme, then there exists a natural way to achieve turn-consistency
by letting the parties avoid communicating in between the “ticks” thus allowing the
“late clock” to sync.

Proposition 15. Let PA and PB be parties communicating via the two-way TBCC
protocol, constructed from a sequential one-way scheme as in Def. 45. The strategy

Instantiating the Turn Based Communication Channel 185

of (i) dropping communicated messages during de-synchronization, i.e. the local turn
between the parties is different; and (ii) globally advance the turn whenever both parties
have the same local turn; allows turn-consistency as in Def. 48.

Recovery Procedure. We consider the existence of a recovery procedure that should
be executed whenever a party spots a possible communication tamper and, instead of
directly aborting the protocol, the two parties try to find a common correct message
block. In other words, the algorithm tamper-ver from Construction 1 takes as input the
last block views MPA and MPB that the two parties have and either outputs a commonly
agreeable block M or aborts.

Definition 49 (Recovery). Define the recovery procedure for Proto. 3 as the proced-
ure executed during turn t ≤ n by PA (resp. PB) whenever the tamper verification
tamper-ver(C, t,Mt−1,m, aux, ξ) is equal 0 and defined as:

• Recovery: PA sends its view MA
t−1 to PB from whom it receives the view MB

t−1

which is a ordered list of messages {mi}
jt−1

i=1 and, additionally, for every mes-
sage the received auxiliary information σ. After identifying the set of indexes
I where the views differ, for each index l ∈ I, if the message ml is a message
from PB, then PA executes backward-ver(CB , t,MB

t−1, l), otherwise PB will com-
pute backward-ver(CA, t,MA

t−1, l). Either the case, if the result is 1, both parties
are forced to use the message ml resolving the discrepancy and saving the result
into the same resolved block Mt−1. Otherwise, if there exists an index for which
the result is 0, the communication is aborted.

The spirit of the TBCC is “if anything seems wrong, abort!”. This forces the parties
to behave honestly otherwise nothing can be achieved, meaning there can never exist
two different correct views. During the recovery procedure, the communication is
paused and completely verified and fixed before continuing and, if necessary, aborted
because it is unrecoverable. The receiver must be aware and promptly alert the sender
if hi−1 is wrong and, if it is the case, only the receiver can force the sender to adopt a
specific message mi by exhibiting the received proof σi, only computable by the sender.

Formally, suppose PA and PB are correctly communicating until the i-th turn, i.e.
all the blocks until Mi−1 are consistent. PA sends

(
hAi−1,mA

i , ξ
A
i , σ

A
i

)
and PB does

the same with the message mB
i . Let us suppose that the values {ξAi , ξBi } are correct

otherwise the messages will be discarded by valid-ver. Thus the correct next block is
Mi = {mA

i ,mB
i }. Whenever the turn (i + 1) starts, PB and PA must share the block

digests hAi and hBi and suppose they are not equal.
The recovery procedure is executed and PB will publish the block-view {mA

i ,mB
i },

respectively PA must do the same, and there must be at least a different message pair,
w.l.o.g. suppose it is message mA

i and mA⋆. Since this is the message that Alice sent, in
the recovery, we will just consider Bob’s view mA⋆ with received auxiliary information
σA

⋆ which Bob cannot correctly forge by assumption, i.e. he cannot produce a correct
valid pair. Therefore PB can only re-publish what PA sent or abort the communication.
Regardless of PB ’s maliciousness, he is unable to modify Alice’s messages and therefore
the procedure continues only if σA⋆ is correctly computed by PA. In the case that Bob’s
message mB

i is different, Alice’s vision is considered. If Bob is honest, the previous
discussion applies for Alice. Otherwise, Bob might try to force the acceptance of a
different pair (mB⋆, σB

⋆
). Since his vision during recovery is not considered, he must

have sent the tampered values (mB⋆, σB
⋆
) before but if this is the case, either Alice is

presenting the tampered pair (mB⋆, σB
⋆
), which makes the pair not longer a tamper,

since it is correctly received by Alice and not later modified, or by sending an incorrect
pair that will lead to aborting the communication. Mutatis mutandis, the same is

186 Paper H - Turn Based Communication Channel

true when switching PA and PB roles. If everything is correct, the block vision is
consolidated, communication can resume and the only real cost is that both PA and PB
lost a single turn.

4 Collectively Flipping Coins over the TBCC

In this section, we sketch a protocol that allows two parties to collectively flip a coin
which allows them to commonly create a random string. Our TBCC protocol is con-
structed from time-lock puzzles which are used in similar applications, as:

• a user can create encrypted time capsule, i.e. an encrypted message that is meant
to only be decryptable after a designed amount of time;

• a user can provide a signature that can only be verified in the future.
As discussed by Rivest et al. [RSW96], these are founded on the concept of releasing a
timed commitment that can be decommitted after a specific amount of time.

The provided coin-flip solution is simplistic and it has the main goal of showing the
TBCC’s expressiveness/potentiality. To provide a formal security analysis, TBCC must
be proven secure against active adversaries and general protocol’s composability which,
as previously assumed, are left open for future research.

Flipping Coins over TBCC. The underlying idea is that two parties, communicating
over a TBCC’s instance, are able to jointly flip a coin by both time-committing to some
randomness which is later revealed and used to compute the coin result. By repeatedly
flipping coins, the results produce a random string which is guaranteed to be consistent
since communicated over TBCC.

Let us provide a formalisation of the collectively coin-flip between Alice PA and Bob
PB . These protocols are defined by a set of choices Σ and a set of rules that allows
to determine the result between any two choices, denoted with the function µ(·, ·).
Formally, the collective coin-flip protocol is therefore defined as:

(a) PA and PB set up the two-way TBCC protocol of Proto. 3 and obtain the public
channel C = (CPA , CPB);

(b) In the current turn, PA selects its choice a ∈ Σ and sends on C as a valid message,
i.e. PA execute the sending procedure with the message (a, 1). For each other
choice a⋆ ∈ Σ, PA sends the non-valid message (a⋆, 0). Respectively, PB sends his
valid and invalid messages;

(c) At the end of the turn, PA computes the validity of PB ’s received messages and
obtains b. Respectively for PB ;

(d) Both the parties compute µ(a, b) and, if necessary, repeat the game. If the channel
loses consistency, i.e. one of the party tries to tamper the results, the communic-
ation is aborted;

(e) The random string is obtained by concatenating several consecutive results of the
consistent channel.

The “commit-decommit” phase created by the turn token is key to allow a fair-play since,
for example, if PA knows PB ’s choice b in advance, she can select a winning choice a⋆.
Furthermore, ϕ must be defined even in the case of one party not participating in the
round or it tries to cheat by proposing multiple choices. We are now left to define
the choice’s set Σ and the rule’s map µ(·, ·). Σ contains the choices head and tail,
respectively 1 and 0 and, additionally, a special element x that represents any non-
correct choice, i.e. a party does not correctly participate in the game. Define the map µ
as µ(a, b) = a⊕b, i.e. the xor between the inputs where the special element is mapped as
µ(x, a) = µ(a, x) = a for each a ∈ Σ and we consider a special state X used to denote that
both player wrongly participated in the flipping, i.e. µ(x, x) = X. In a nutshell, µ(a, b)
computes the xor of both the parties inputs whenever they are correctly participating in
the coin-flip. Complementary, if both the parties wrongly flip the coin, µ(x, x) returns

Collectively Flipping Coins over the TBCC 187

that the coin is in a “draw position” with “no winner”. Whenever a party, e.g. PA,
wrongly participates in the protocol, µ(x, b) awards the other party PB for correctly
behaving and let PB ’s choice be the final result. This forces the parties to correctly
behave to avoid the other party highly influence the coin-flip. For example, suppose
that PA selects 1 as her first choice and sends to PB the TBCC messages (1, 1) and (0, 0)
during the current turn. By the sequentiality property, PB is unable to discover “which
message is the valid one” and therefore has no advantage and must therefore provide
his own choice, w.l.o.g. let PB choose 0. At the end of the turn, the valid messages
are maintained thus the block will contain PA’s message 1 and PB ’s one 0. Both the
parties can now compute µ(1, 0) = 1 and acknowledge that the coin flip is 1. The TBCC
protocol guarantees communication coherence which implies that, whenever repeating
the game, both the parties must accept the previous communication transcription. In
other words, while communicating over C, PA and PB cannot modify the output of the
different rounds played. This means that if the result is 1, in the next round PB cannot
pretend a different outcome and must accept it if he wants to participate in the next
round. The game output’s transcript can be seen as a random string between PA and
PB which cannot be tampered with by a malicious adversary. Additionally, every time
the adversary is caught tampering or deny the communication, the whole protocol is
terminated making it impossible for the adversary to gain any relevant advantage.

We must point out that our protocol does not approximate a public coin flip one
which can be used to generate the common reference string model. In the public
coin-flip protocol, the two parties obtain a random coin-flip without introducing their
own personally sampled randomness. For this reason, our protocol can be used to
approximate an empirical version of the common reference string model in which the
parties actively collaborate to sample a random string.

Bibliography

[Adl83] Leonard M. Adleman. Implementing an Electronic Notary Public. In
Advances in Cryptology, 1983.

[AFS05] Daniel Augot, Matthieu Finiasz, and Nicolas Sendrier. A Family of Fast
Syndrome Based Cryptographic Hash Functions. In Progress in Cryptology
– Mycrypt 2005, 2005.

[AG17] Hunt Allcott and Matthew Gentzkow. Social Media and Fake News in the
2016 Election. J. Econ. Perspect., 31(2), May 2017.

[AGM+13] Joseph A. Akinyele, Christina Garman, Ian Miers, Matthew W. Pagano,
Michael Rushanan, Matthew Green, and Aviel D. Rubin. Charm: A frame-
work for rapidly prototyping cryptosystems. J Cryptogr Eng, 3(2), June
2013.

[AGP16] Pablo Daniel Azar, Shafi Goldwasser, and Sunoo Park. How to Incentivize
Data-Driven Collaboration Among Competing Parties. In ITCS, 2016.

[AGS11] C. Aguilar, P. Gaborit, and J. Schrek. A new zero-knowledge code based
identification scheme with reduced communication. In 2011 IEEE Inform-
ation Theory Workshop, October 2011.

[Ajt96] M. Ajtai. Generating hard instances of lattice problems (extended ab-
stract). In Proceedings of the Twenty-Eighth Annual ACM Symposium on
Theory of Computing, July 1996.

[Alp14] Ethem Alpaydin. Introduction to Machine Learning. Third edition edition,
2014.

[AT17] Joël Alwen and Björn Tackmann. Moderately Hard Functions: Definition,
Instantiations, and Applications. In TCC, 2017.

[BBBF18] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable
Delay Functions. In CRYPTO, volume 10991. 2018.

[BBCD20] Anubhab Baksi, Jakub Breier, Yi Chen, and Xiaoyang Dong. Machine
learning assisted differential distinguishers for lightweight ciphers (exten-
ded version). 2020.

[BBF19] Dan Boneh, Benedikt Bünz, and Ben Fisch. Batching Techniques for
Accumulators with Applications to IOPs and Stateless Blockchains. In
CRYPTO, 2019.

189

190 BIBLIOGRAPHY

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From
extractable collision resistance to succinct non-interactive arguments of
knowledge, and back again. In Proceedings of the 3rd Innovations in
Theoretical Computer Science Conference, January 2012.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recurs-
ive composition and bootstrapping for SNARKS and proof-carrying data.
In Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of
Computing, June 2013.

[BCF17] Manuel Barbosa, Dario Catalano, and Dario Fiore. Labeled Homomorphic
Encryption. In Computer Security – ESORICS 2017, 2017.

[BCS19] Carlo Brunetta, Marco Calderini, and Massimiliano Sala. On hidden
sums compatible with a given block cipher diffusion layer. Discrete Math.,
342(2), February 2019.

[BDD+20] Carsten Baum, Bernardo David, Rafael Dowsley, Jesper Buus Nielsen,
and Sabine Oechsner. TARDIS: Time And Relative Delays In Simulation.
Technical Report 537, 2020.

[BDL+16] Carsten Baum, Ivan Damgård, Vadim Lyubashevsky, Sabine Oechsner,
and Chris Peikert. More Efficient Commitments from Structured Lattice
Assumptions. Technical Report 997, 2016.

[BDLM17] Carlo Brunetta, Christos Dimitrakakis, Bei Liang, and Aikaterini
Mitrokotsa. A Differentially Private Encryption Scheme. In Information
Security, 2017.

[BEB13] Robert G Brown, Dirk Eddelbuettel, and David Bauer. Dieharder: A
random number test suite. Open Source Softw. Libr., 2013.

[Bei11] Amos Beimel. Secret-Sharing Schemes: A Survey. In Coding and Crypto-
logy, 2011.

[Ben87] Josh Cohen Benaloh. Secret Sharing Homomorphisms: Keeping Shares
of a Secret Secret (Extended Abstract). In Advances in Cryptology —
CRYPTO’ 86, 1987.

[BF14] Mihir Bellare and Georg Fuchsbauer. Policy-Based Signatures. In Public-
Key Cryptography – PKC 2014, 2014.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional Signatures
and Pseudorandom Functions. In Public-Key Cryptography – PKC 2014,
2014.

[BGI17] Elette Boyle, Niv Gilboa, and Yuval Ishai. Group-Based Secure Com-
putation: Optimizing Rounds, Communication, and Computation. In
Advances in Cryptology – EUROCRYPT 2017, 2017.

[BGJ+16] Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth, Vinod
Vaikuntanathan, and Brent Waters. Time-Lock Puzzles from Random-
ized Encodings. In ITCS, 2016.

[BGM16] Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. Cryptocurrencies Without
Proof of Work. In FC, 2016.

BIBLIOGRAPHY 191

[BIK+17] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone,
H. Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and
Karn Seth. Practical Secure Aggregation for Privacy-Preserving Machine
Learning. In Proceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security, October 2017.

[BK15] Elaine B. Barker and John M. Kelsey. Recommendation for Random
Number Generation Using Deterministic Random Bit Generators. Tech-
nical Report NIST SP 800-90Ar1, National Institute of Standards and
Technology, June 2015.

[BK16] Elaine Barker and John Kelsey. Recommendation for Random Bit Gen-
erator (RBG) Constructions. Technical Report NIST Special Publication
(SP) 800-90C (Draft), National Institute of Standards and Technology,
April 2016.

[BKLP15] Fabrice Benhamouda, Stephan Krenn, Vadim Lyubashevsky, and
Krzysztof Pietrzak. Efficient Zero-Knowledge Proofs for Commitments
from Learning with Errors over Rings. In Proceedings, Part I, of the 20th
European Symposium on Computer Security – ESORICS 2015 - Volume
9326, 2015.

[BLM18] Carlo Brunetta, Bei Liang, and Aikaterini Mitrokotsa. Lattice-Based Sim-
ulatable VRFs: Challenges and Future Directions. J. Internet Serv. Inf.
Secur. JISIS, 8(4), November 2018.

[BLM19] Carlo Brunetta, Bei Liang, and Aikaterini Mitrokotsa. Code-Based Zero
Knowledge PRF Arguments. In Information Security, 2019.

[BLMR13] Dan Boneh, Kevin Lewi, Hart Montgomery, and Ananth Raghunathan.
Key Homomorphic PRFs and Their Applications. In Advances in Crypto-
logy – CRYPTO 2013, 2013.

[BLS04] Dan Boneh, Ben Lynn, and Hovav Shacham. Short Signatures from the
Weil Pairing. J. Cryptol., 17(4), September 2004.

[BMS16] Michael Backes, Sebastian Meiser, and Dominique Schröder. Delegatable
Functional Signatures. In Public-Key Cryptography – PKC 2016, 2016.

[BMv78] E. Berlekamp, R. McEliece, and H. van Tilborg. On the inherent in-
tractability of certain coding problems (Corresp.). IEEE Trans. Inform.
Theory, 24(3), May 1978.

[BN00] Dan Boneh and Moni Naor. Timed Commitments. In CRYPTO, 2000.

[BNO11] Amos Beimel, Kobbi Nissim, and Eran Omri. Distributed Private Data
Analysis: On Simultaneously Solving How and What. ArXiv11032626 Cs,
March 2011.

[BP21] Carlo Brunetta and Pablo Picazo-Sanchez. Modelling cryptographic dis-
tinguishers using machine learning. J. Cryptogr. Eng., July 2021.

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom Func-
tions and Lattices. In Advances in Cryptology – EUROCRYPT 2012,
volume 7237. 2012.

192 BIBLIOGRAPHY

[Bri90] Ernest F. Brickell. Some Ideal Secret Sharing Schemes. In Advances in
Cryptology — EUROCRYPT ’89, 1990.

[BRS+10] Lawrence Bassham, Andrew Rukhin, Juan Soto, James Nechvatal, Miles
Smid, Elaine Barker, Stefan Leigh, Mark Levenson, Mark Vangel, David
Banks, N. Heckert, and James Dray. A Statistical Test Suite for Random
and Pseudorandom Number Generators for Cryptographic Applications.
Technical Report NIST Special Publication (SP) 800-22 Rev. 1a, National
Institute of Standards and Technology, April 2010.

[BS91] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like
cryptosystems. J. Cryptology, 4(1), January 1991.

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic
encryption from (standard) LWE. SIAM J. Comput., 43(2), 2014.

[CG86] Alfredo Capelli and Giovanni Garbieri. Corso Di Analisi Algebrica: 1:
Teorie Introduttorie, volume 1. 1886.

[CGG07] Pierre-Louis Cayrel, Philippe Gaborit, and Marc Girault. Identity-Based
Identification and Signature Schemes Using Correcting Codes. In WCC,
volume 2007, 2007.

[CGMA85] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Veri-
fiable secret sharing and achieving simultaneity in the presence of faults.
In Proceedings of the 26th Annual Symposium on Foundations of Com-
puter Science, October 1985.

[Cha95] Florent Chabaud. On the security of some cryptosystems based on error-
correcting codes. In Advances in Cryptology — EUROCRYPT’94, 1995.

[CKP+20] S. Cohney, A. Kwong, S. Paz, D. Genkin, N. Heninger, E. Ronen, and
Y. Yarom. Pseudorandom black swans: Cache attacks on CTR_DRBG.
In S&P, May 2020.

[CL07] Melissa Chase and Anna Lysyanskaya. Simulatable VRFs with Applic-
ations to Multi-theorem NIZK. In Advances in Cryptology - CRYPTO
2007, August 2007.

[CLZ12] Rafik Chaabouni, Helger Lipmaa, and Bingsheng Zhang. A Non-
interactive Range Proof with Constant Communication. In Financial
Cryptography and Data Security, 2012.

[Con18] A. Connolly. Freedom of Encryption. IEEE Secur. Priv., 16(1), January
2018.

[Cou16] Council of the European Union, European Parliament. Regulation (EU)
2016/679 (General Data Protection Regulation). 2016.

[CPSV16] Michele Ciampi, Giuseppe Persiano, Luisa Siniscalchi, and Ivan Visconti.
A Transform for NIZK Almost as Efficient and General as the Fiat-Shamir
Transform Without Programmable Random Oracles. In Theory of Cryp-
tography, 2016.

[CRRV17] Ran Canetti, Srinivasan Raghuraman, Silas Richelson, and Vinod Vaikun-
tanathan. Chosen-Ciphertext Secure Fully Homomorphic Encryption. In
Public-Key Cryptography – PKC 2017, 2017.

BIBLIOGRAPHY 193

[CV07] Dario Catalano and Ivan Visconti. Hybrid Commitments and Their Ap-
plications to Zero-knowledge Proof Systems. Theor Comput Sci, 374(1-3),
April 2007.

[CVEYA11] Pierre-Louis Cayrel, Pascal Véron, and Sidi Mohamed El Yousfi Alaoui.
A Zero-Knowledge Identification Scheme Based on the q-ary Syndrome
Decoding Problem. In Selected Areas in Cryptography, 2011.

[CZD+19] Chengjun Cai, Yifeng Zheng, Yuefeng Du, Zhan Qin, and Cong Wang.
Towards Private, Robust, and Verifiable Crowdsensing Systems via Public
Blockchains. IEEE Trans. Dependable and Secure Comput., 2019.

[DGKR18] Bernardo David, Peter Gaži, Aggelos Kiayias, and Alexander Russell.
Ouroboros Praos: An Adaptively-Secure, Semi-synchronous Proof-of-
Stake Blockchain. In Advances in Cryptology – EUROCRYPT 2018, 2018.

[DH76] Whitfield Diffie and Martin E. Hellman. New Directions in Cryptography.
IEEE Trans. Inf. Theory, 22(6), 1976.

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calib-
rating Noise to Sensitivity in Private Data Analysis. In Theory of Cryp-
tography, volume 3876. 2006.

[DNR04] Cynthia Dwork, Moni Naor, and Omer Reingold. Immunizing Encryption
Schemes from Decryption Errors. In Advances in Cryptology - EURO-
CRYPT 2004, 2004.

[DNS04] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge.
J. ACM, 51(6), November 2004.

[DS06] A.D. Dileep and C.C. Sekhar. Identification of Block Ciphers using Sup-
port Vector Machines. In The 2006 IEEE International Joint Conference
on Neural Network Proceedings, July 2006.

[Dwo06] Cynthia Dwork. Differential Privacy. In Automata, Languages and Pro-
gramming, 2006.

[EED08] Khaled El Emam and Fida Kamal Dankar. Protecting Privacy Using
k-Anonymity. J Am Med Inf. Assoc, 15(5), 2008.

[ElG85] Taher ElGamal. A Public Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms. In Advances in Cryptology, 1985.

[ELL+15] Martianus Frederic Ezerman, Hyung Tae Lee, San Ling, Khoa Nguyen,
and Huaxiong Wang. A Provably Secure Group Signature Scheme from
Code-Based Assumptions. In Advances in Cryptology – ASIACRYPT
2015, 2015.

[ETLP13] Z. Erkin, J. R. Troncoso-pastoriza, R. L. Lagendijk, and F. Perez-
Gonzalez. Privacy-preserving data aggregation in smart metering systems:
An overview. IEEE Signal Process. Mag., 30(2), March 2013.

[EYACM11] Sidi Mohamed El Yousfi Alaoui, Pierre-Louis Cayrel, and Meziani Mo-
hammed. Improved Identity-Based Identification and Signature Schemes
Using Quasi-Dyadic Goppa Codes. In Information Security and Assur-
ance, 2011.

194 BIBLIOGRAPHY

[FFKB17] Andreas Fischer, Benny Fuhry, Florian Kerschbaum, and Eric Bodden.
Computation on Encrypted Data using Data Flow Authentication. CoRR,
abs/1710.00390, 2017.

[FG12] Dario Fiore and Rosario Gennaro. Publicly Verifiable Delegation of Large
Polynomials and Matrix Computations, with Applications. In Proceedings
of the 2012 ACM Conference on Computer and Communications Security,
2012.

[FGJS17] Nelly Fazio, Rosario Gennaro, Tahereh Jafarikhah, and William E. Skeith.
Homomorphic Secret Sharing from Paillier Encryption. In Provable Se-
curity, 2017.

[FGP14] Dario Fiore, Rosario Gennaro, and Valerio Pastro. Efficiently Verifiable
Computation on Encrypted Data. In Proceedings of the 2014 ACM SIG-
SAC Conference on Computer and Communications Security, 2014.

[Fis18] Tilo Fischer. Testing Cryptographically Secure Pseudo Random Number
Generators with Artificial Neural Networks. In 2018 17th IEEE Inter-
national Conference On Trust, Security And Privacy In Computing And
Communications/ 12th IEEE International Conference On Big Data Sci-
ence And Engineering (TrustCom/BigDataSE), August 2018.

[FMNP16] Dario Fiore, Aikaterini Mitrokotsa, Luca Nizzardo, and Elena Pagnin.
Multi-key Homomorphic Authenticators. In Advances in Cryptology –
ASIACRYPT 2016, 2016.

[FS87] Amos Fiat and Adi Shamir. How To Prove Yourself: Practical Solutions
to Identification and Signature Problems. In Advances in Cryptology —
CRYPTO’ 86, 1987.

[FS96] Jean-Bernard Fischer and Jacques Stern. An Efficient Pseudo-Random
Generator Provably as Secure as Syndrome Decoding. In Advances in
Cryptology — EUROCRYPT ’96, 1996.

[GAC18] Francisco-Javier González-Serrano, Adrián Amor-Martín, and Jorge
Casamayón-Antón. Supervised machine learning using encrypted training
data. Int. J. Inf. Secur., 17(4), 2018.

[Gen09] Craig Gentry. A Fully Homomorphic Encryption Scheme. PhD Thesis,
Stanford University, 2009.

[GGG17] Zahra Ghodsi, Tianyu Gu, and Siddharth Garg. SafetyNets: Verifiable
execution of deep neural networks on an untrusted cloud. In Advances in
Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, 2017.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to Construct
Random Functions. J ACM, 33(4), August 1986.

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive Veri-
fiable Computing: Outsourcing Computation to Untrusted Workers. In
Advances in Cryptology – CRYPTO 2010, 2010.

[Gil52] E. N. Gilbert. A comparison of signalling alphabets. Bell Syst. Tech. J.,
31(3), May 1952.

BIBLIOGRAPHY 195

[GJ11] Flavio D. Garcia and Bart Jacobs. Privacy-Friendly Energy-Metering via
Homomorphic Encryption. In Security and Trust Management, 2011.

[GK06] S. Dov Gordon and Jonathan Katz. Rational Secret Sharing, Revisited.
In Security and Cryptography for Networks, 2006.

[GKL15] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The Bitcoin Backbone
Protocol: Analysis and Applications. In EUROCRYPT, volume 9057.
2015.

[GKM11] Johannes Gehrke, Daniel Kifer, and Ashwin Machanavajjhala. L-
Diversity. In Encyclopedia of Cryptography and Security. 2011.

[GL89] O. Goldreich and L. A. Levin. A hard-core predicate for all one-way
functions. In Proceedings of the Twenty-First Annual ACM Symposium
on Theory of Computing, February 1989.

[GLS07] P. Gaborit, C. Lauradoux, and N. Sendrier. SYND: A Fast Code-Based
Stream Cipher with a Security Reduction. In 2007 IEEE International
Symposium on Information Theory, June 2007.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption & how
to play mental poker keeping secret all partial information. In Proceedings
of the Fourteenth Annual ACM Symposium on Theory of Computing, May
1982.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signa-
ture scheme secure against adaptive chosen-message attacks. SIAM J.
Comput., 17(2), April 1988.

[GNP+15] Sharon Goldberg, Moni Naor, Dimitrios Papadopoulos, Leonid Reyzin,
Sachin Vasant, and Asaf Ziv. NSEC5: Provably Preventing DNSSEC Zone
Enumeration. In 22nd Annual Network and Distributed System Security
Symposium, NDSS 2015, San Diego, California, USA, February 8-11,
2015, 2015.

[Goh19] Aron Gohr. Improving Attacks on Round-Reduced Speck32/64 Using
Deep Learning. In Advances in Cryptology – CRYPTO 2019, 2019.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive argu-
ments from all falsifiable assumptions. In Proceedings of the Forty-Third
Annual ACM Symposium on Theory of Computing, June 2011.

[GW13] Rosario Gennaro and Daniel Wichs. Fully Homomorphic Message Au-
thenticators. In Advances in Cryptology - ASIACRYPT 2013, 2013.

[HAP17] Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. Deep Models
Under the GAN: Information Leakage from Collaborative Deep Learning.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, October 2017.

[Her28] Alex Hern. Fitness tracking app Strava gives away location of secret US
army bases. The Guardian, 2018.Jan.28.

[HGDM+11] Gabriel Hospodar, Benedikt Gierlichs, Elke De Mulder, Ingrid
Verbauwhede, and Joos Vandewalle. Machine learning in side-channel
analysis: A first study. J Cryptogr Eng, 1(4), October 2011.

196 BIBLIOGRAPHY

[Hir09] Shoichi Hirose. Security Analysis of DRBG Using HMAC in NIST SP
800-90. In Information Security Applications, 2009.

[HMT13] Rong Hu, Kirill Morozov, and Tsuyoshi Takagi. Proof of plaintext know-
ledge for code-based public-key encryption revisited. In Proceedings of the
8th ACM SIGSAC Symposium on Information, Computer and Commu-
nications Security, May 2013.

[HPS14] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. An Introduction
to Cryptography. In An Introduction to Mathematical Cryptography. 2014.

[HZ19] Xinyi Hu and Yaqun Zhao. Block Ciphers Classification Based on Random
Forest. J. Phys.: Conf. Ser., 1168, February 2019.

[JLE14] Zhanglong Ji, Zachary C. Lipton, and Charles Elkan. Differential Pri-
vacy and Machine Learning: A Survey and Review. ArXiv14127584 Cs,
December 2014.

[Jou09] Antoine Joux. Algorithmic Cryptanalysis. 2009.

[KK06] Shri Kant and Shehroz S. Khan. Analyzing a class of pseudo-random
bit generator through inductive machine learning paradigm. Intell. Data
Anal., 10(6), December 2006.

[KKG+09] Shri Kant, Naveen Kumar, Sanchit Gupta, Amit Singhal, and Rachit
Dhasmana. Impact of machine learning algorithms on analysis of stream
ciphers. In 2009 Proceeding of International Conference on Methods and
Models in Computer Science (ICM2CS), December 2009.

[KL08] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography.
2008.

[KLP07] Yael Tauman Kalai, Yehuda Lindell, and Manoj Prabhakaran. Concurrent
Composition of Secure Protocols in the Timing Model. J Crypto, 20(4),
October 2007.

[KMS14] Jonathan Katz, Andrew Miller, and Elaine Shi. Pseudonymous Broadcast
and Secure Computation from Cryptographic Puzzles. Technical Report
857, 2014.

[KMTZ13] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Uni-
versally Composable Synchronous Computation. In TCC, 2013.

[Kob87] Neal Koblitz. Elliptic curve cryptosystems. Math. Comput., 48(177),
January 1987.

[Koz91] John Koza. Evolving a computer program to generate random numbers
using the genetic programming paradigm. In Proceedings of the Fourth
International Conference on Genetic Algorithms, 1991.

[Kra94] Hugo Krawczyk. Secret Sharing Made Short. In Advances in Cryptology
— CRYPTO’ 93, 1994.

[KRDO17] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman
Oliynykov. Ouroboros: A Provably Secure Proof-of-Stake Blockchain Pro-
tocol. In CRYPTO, volume 10401, 2017.

BIBLIOGRAPHY 197

[KTX08] Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa. Concurrently Se-
cure Identification Schemes Based on the Worst-Case Hardness of Lattice
Problems. In Advances in Cryptology - ASIACRYPT 2008, 2008.

[LABK17] Wenting Li, Sébastien Andreina, Jens-Matthias Bohli, and Ghassan
Karame. Securing Proof-of-Stake Blockchain Protocols. In Data Pri-
vacy Management, Cryptocurrencies and Blockchain Technology, volume
10436. 2017.

[Lin15] Yehuda Lindell. An Efficient Transform from Sigma Protocols to NIZK
with a CRS and Non-programmable Random Oracle. In Theory of Cryp-
tography, 2015.

[LLM+16] Benoît Libert, San Ling, Fabrice Mouhartem, Khoa Nguyen, and Huax-
iong Wang. Zero-Knowledge Arguments for Matrix-Vector Relations and
Lattice-Based Group Encryption. In Advances in Cryptology – ASIAC-
RYPT 2016, 2016.

[LLNW17] Benoît Libert, San Ling, Khoa Nguyen, and Huaxiong Wang. Zero-
Knowledge Arguments for Lattice-Based PRFs and Applications to E-
Cash. In Advances in Cryptology – ASIACRYPT 2017, 2017.

[LLNW18] Benoît Libert, San Ling, Khoa Nguyen, and Huaxiong Wang. Lattice-
Based Zero-Knowledge Arguments for Integer Relations. In Advances in
Cryptology – CRYPTO 2018, 2018.

[LLV07] N. Li, T. Li, and S. Venkatasubramanian. T-Closeness: Privacy Beyond k-
Anonymity and l-Diversity. In 2007 IEEE 23rd International Conference
on Data Engineering, April 2007.

[LMA+18] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Wei-
hang Wang, and Xiangyu Zhang. Trojaning attack on neural networks. In
25th Annual Network and Distributed System Security Symposium, NDSS,
2018.

[LMS18] Russell W. F. Lai, Giulio Malavolta, and Dominique Schröder. Homo-
morphic Secret Sharing for Low Degree Polynomials. In Advances in
Cryptology – ASIACRYPT 2018, 2018.

[LS07] Pierre L’Ecuyer and Richard Simard. TestU01: A C library for empirical
testing of random number generators. ACM Trans. Math. Softw., 33(4),
August 2007.

[LW15] Arjen K. Lenstra and Benjamin Wesolowski. A random zoo: Sloth, uni-
corn, and trx. Technical Report 366, 2015.

[LYAX18] Kang Li, Rupeng Yang, Man Ho Au, and Qiuliang Xu. Practical Range
Proof for Cryptocurrency Monero with Provable Security. In Information
and Communications Security, 2018.

[MCEYA11] Mohammed Meziani, Pierre-Louis Cayrel, and Sidi Mohamed
El Yousfi Alaoui. 2SC: An Efficient Code-Based Stream Cipher.
In Information Security and Assurance, 2011.

[Mei12] Rebecca Meissen. A Mathematical Approach to Fully Homomorphic En-
cryption. PhD Thesis, Worcester Polytechnic Institute, 2012.

198 BIBLIOGRAPHY

[MHC12] Mohammed Meziani, Gerhard Hoffmann, and Pierre-Louis Cayrel. Im-
proving the Performance of the SYND Stream Cipher. In Progress in
Cryptology - AFRICACRYPT 2012, 2012.

[MMR+17] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Agüera y Arcas. Communication-efficient learning of deep networks
from decentralized data. In Proc. of AISTATS, 2017.

[MMV11] Mohammad Mahmoody, Tal Moran, and Salil Vadhan. Time-Lock Puzzles
in the Random Oracle Model. In Advances in Cryptology – CRYPTO 2011,
2011.

[MP13] Daniele Micciancio and Chris Peikert. Hardness of SIS and LWE with
Small Parameters. In Advances in Cryptology – CRYPTO 2013, 2013.

[MR02] Silvio Micali and Ronald L. Rivest. Micropayments Revisited. In Topics
in Cryptology — CT-RSA 2002, 2002.

[MT09] Ravi Montenegro and Prasad Tetali. How long does it take to catch a wild
kangaroo? In Proceedings of the Forty-First Annual ACM Symposium on
Theory of Computing, May 2009.

[MT19] Giulio Malavolta and Sri Aravinda Krishnan Thyagarajan. Homomorphic
Time-Lock Puzzles and Applications. In CRYPTO, 2019.

[MVR99] Silvio Micali, Salil Vadhan, and Michael Rabin. Verifiable Random Func-
tions. In Proceedings of the 40th Annual Symposium on Foundations of
Computer Science, October 1999.

[Nie02] Jesper Buus Nielsen. Separating Random Oracle Proofs from Complexity
Theoretic Proofs: The Non-committing Encryption Case. In Advances in
Cryptology — CRYPTO 2002, volume 2442. 2002.

[NIS17] NIST STS. Cryptographic Key Length Recommendation. 2017.

[NS08] Arvind Narayanan and Vitaly Shmatikov. Robust De-anonymization of
Large Sparse Datasets. In 2008 IEEE Symposium on Security and Privacy
(Sp 2008), May 2008.

[PAH+18] L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai. Privacy-
Preserving Deep Learning via Additively Homomorphic Encryption. IEEE
Trans. Inf. Forensics Secur., 13(5), May 2018.

[Pai99] Pascal Paillier. Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes. In Advances in Cryptology — EUROCRYPT ’99,
1999.

[Par18] Stuart L Pardau. The california consumer privacy act: Towards a
european-style privacy regime in the united states. J Tech Pol, 23, 2018.

[PB10] K. Peng and F. Bao. An Efficient Range Proof Scheme. In 2010 IEEE
Second International Conference on Social Computing, August 2010.

[PBP18] Elena Pagnin, Carlo Brunetta, and Pablo Picazo-Sanchez. HIKE: Walking
the Privacy Trail. In Cryptology and Network Security, 2018.

BIBLIOGRAPHY 199

[Pei16] Chris Peikert. A Decade of Lattice Cryptography. Found. Trends Theor.
Comput. Sci., 10(4), March 2016.

[PJ17] M. Panjwani and M. Jäntti. Data Protection Security Challenges in Di-
gital IT Services: A Case Study. In 2017 International Conference on
Computer and Applications (ICCA), September 2017.

[PO14] Alberto Peinado and Andrés Ortiz. Prediction of Sequences Generated by
LFSR Using Back Propagation MLP. In International Joint Conference
SOCO’14-CISIS’14-ICEUTE’14, 2014.

[Pol78] John M Pollard. Monte Carlo methods for index computation (mod p).
Math. Comput., 32(143), 1978.

[Pol00] J. M. Pollard. Kangaroos, Monopoly and Discrete Logarithms. J. Cryptol.,
13(4), September 2000.

[PRV12] Bryan Parno, Mariana Raykova, and Vinod Vaikuntanathan. How to
Delegate and Verify in Public: Verifiable Computation from Attribute-
Based Encryption. In Theory of Cryptography, 2012.

[PST13] Charalampos Papamanthou, Elaine Shi, and Roberto Tamassia. Signa-
tures of Correct Computation. In Theory of Cryptography, 2013.

[PWH+17] Dimitrios Papadopoulos, Duane Wessels, Shumon Huque, Moni Naor, Jan
Včelák, Leonid Reyzin, and Sharon Goldberg. Making NSEC5 Practical
for DNSSEC. 2017.

[RAD78] R L Rivest, L Adleman, and M L Dertouzos. On Data Banks and Privacy
Homomorphisms. Found. Secure Comput. Acad. Press, 1978.

[Reg10] Oded Regev. The Learning with Errors Problem (Invited Survey). In
Proceedings of the 2010 IEEE 25th Annual Conference on Computational
Complexity, 2010.

[RSW96] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock Puzzles and Timed-
release Crypto. Technical report, Massachusetts Institute of Technology,
1996.

[SAL07] Dario L. M. Sacchi, Franca Agnoli, and Elizabeth F. Loftus. Changing
history: Doctored photographs affect memory for past public events. Appl.
Cogn. Psychol., 21(8), December 2007.

[Sha48] C. E. Shannon. A Mathematical Theory of Communication. Bell Syst.
Tech. J., 27(3), 1948.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11), November
1979.

[SS15] Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep learning.
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, 2015.

[SSM14] Bas Stottelaar, Jeroen Senden, and Lorena Montoya. Online social sports
networks as crime facilitators. Crime Sci, 3(1), August 2014.

200 BIBLIOGRAPHY

[SSV19] Alessandra Scafuro, Luisa Siniscalchi, and Ivan Visconti. Publicly Verifi-
able Proofs from Blockchains. In PKC, 2019.

[ST96] Moshe Sipper and Marco Tomassini. Generating Parallel Random Number
Generators by Cellular Programming. Int. J. Mod. Phys. C, 07(02), April
1996.

[ST13] W. A. R. D. Souza and A. Tomlinson. A Distinguishing Attack with a
Neural Network. In 2013 IEEE 13th International Conference on Data
Mining Workshops, December 2013.

[Sta96] Markus Stadler. Publicly Verifiable Secret Sharing. In Advances in
Cryptology — EUROCRYPT ’96, 1996.

[STBK+18] Meltem Sönmez Turan, Elaine Barker, John Kelsey, Kerry McKay, Mary
Baish, and Michael Boyle. Recommendation for the Entropy Sources Used
for Random Bit Generation. Technical Report NIST Special Publication
(SP) 800-90B, National Institute of Standards and Technology, January
2018.

[Ste89] Jacques Stern. A method for finding codewords of small weight. In Coding
Theory and Applications, 1989.

[Ste96] J. Stern. A new paradigm for public key identification. IEEE Trans. Inf.
Theory, 42(6), November 1996.

[Str18] Strava. Strava. https://www.strava.com, November 2018.

[SUM13] Petr Svenda, Martin Ukrop, and Vashek Matyáš. Towards cryptographic
function distinguishers with evolutionary circuits. In 2013 International
Conference on Security and Cryptography (SECRYPT), July 2013.

[SV10] N. P. Smart and F. Vercauteren. Fully Homomorphic Encryption with
Relatively Small Key and Ciphertext Sizes. In Public Key Cryptography
– PKC 2010, 2010.

[TB19] Florian Tramèr and Dan Boneh. Slalom: Fast, verifiable and private
execution of neural networks in trusted hardware. In Proceedings of ICLR,
2019.

[THH+09] Brian Thompson, Stuart Haber, William G. Horne, Tomas Sander, and
Danfeng Yao. Privacy-Preserving Computation and Verification of Ag-
gregate Queries on Outsourced Databases. In Privacy Enhancing Tech-
nologies, volume 5672. 2009.

[TLM18] Georgia Tsaloli, Bei Liang, and Aikaterini Mitrokotsa. Verifiable Homo-
morphic Secret Sharing. In Provable Security (ProvSec), 2018, volume
11192, 2018.

[TM20] Georgia Tsaloli and Aikaterini Mitrokotsa. Sum it up: Verifiable additive
homomorphic secret sharing. In Information Security and Cryptology –
ICISC 2019, 2020.

[Var57] R. R. Varshamov. Estimate of the Number of Signals in Error Correcting
Codes. Docklady Akad Nauk SSSR, 117, 1957.

BIBLIOGRAPHY 201

[vGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan.
Fully Homomorphic Encryption over the Integers. In Advances in Crypto-
logy – EUROCRYPT 2010, 2010.

[Wes19] Benjamin Wesolowski. Efficient Verifiable Delay Functions. In EURO-
CRYPT, 2019.

[WF02] Ian H. Witten and Eibe Frank. Data mining: Practical machine learning
tools and techniques with Java implementations. SIGMOD Rec., 31(1),
March 2002.

[WS19] Joanne Woodage and Dan Shumow. An Analysis of NIST SP 800-90A.
In Advances in Cryptology – EUROCRYPT 2019, 2019.

[XEQ18] Weilin Xu, David Evans, and Yanjun Qi. Feature squeezing: Detecting ad-
versarial examples in deep neural networks. In 25th Annual Network and
Distributed System Security Symposium, NDSS 2018, San Diego, Califor-
nia, USA, February 18-21, 2018, 2018.

[XLL+20] G. Xu, H. Li, S. Liu, K. Yang, and X. Lin. VerifyNet: Secure and Verifiable
Federated Learning. IEEE Trans. Inf. Forensics Secur., 15, 2020.

[YS16] Yu Yu and John Steinberger. Pseudorandom Functions in Almost Con-
stant Depth from Low-Noise LPN. In Advances in Cryptology – EURO-
CRYPT 2016, volume 9666. 2016.

[ZZL18] Zhicheng Zhao, Yaqun Zhao, and Fengmei Liu. The Research of
Cryptosystem Recognition Based on Randomness Test’s Return Value.
In Cloud Computing and Security, 2018.

	Abstract
	Acknowledgement
	List of Publications
	Appended Publications
	Research Contributions
	Introduction
	Abstract Model for Data Leaks

	Research Goals for Cryptographic Privacy Preservation
	Thesis Contributions
	Summary and Future Directions

	Paper A - A Differentially Private Encryption Scheme
	Introduction
	Preliminaries
	Our Definition of a_(m1,m2)-correct Encryption Scheme
	Equality Between DP-then-Encrypt and Encrypt+DP
	Example of an a_(m1,m2)-Correct Homomorphic Encryption Scheme
	Conclusions & Future Work

	Paper B - HIKE: Walking the Privacy Trail
	Introduction
	Preliminaries
	Labelled Elliptic-curve ElGamal (LEEG).
	FEET: Feature Extensions to LEEG
	The HIKE protocol
	Security model and proofs for HIKE
	Implementation details and results
	Conclusions and directions for future work

	Paper C - Lattice-Based Simulatable VRFs: Challenges and Future Directions
	Introduction
	Applying Lindell's Tranformation
	Translation of Boneh's PRF
	Challenges and Future Directions

	Paper D - Code-Based Zero Knowledge PRF Arguments
	Intro
	Preliminaries
	Code-Based PRF
	Code-Based Zero Knowledge PRF Argument
	Theoretical Analysis for Implementation Cost
	Conclusions and Future Work

	Paper E - Towards Stronger Functional Signatures
	Introduction
	Preliminaries
	Construction Blocks: Variated Schemes
	Strong Functional Signatures
	Conclusion

	Paper F - Modelling Cryptographic Distinguishers Using Machine Learning
	Introduction
	Preliminaries
	Machine Learning Distinguishers
	Case Study: Cipher Suite Distinguisher for Pseudorandom Generators
	Conclusions and Future Work

	Paper G - Non-Interactive, Secure Verifiable Aggregation for Decentralized, Privacy-Preserving Learning
	Introduction
	Preliminaries
	NIVA
	Implementation and Comparisons

	Paper H - Turn Based Communication Channel
	Introduction
	Preliminaries
	Instantiating the Turn Based Communication Channel
	Collectively Flipping Coins over the TBCC

	Bibliography

