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Abstract. We report the recent results on hidden sums obtained in
the unpublished preprints by Brunetta, Calderini, and Sala. These hid-
den sums could be used to exploit some particular trapdoors in block
ciphers. Each hidden sum is related to an elementary abelian regular
subgroup. Focusing on the subgroups of the affine general linear group,
we are able to characterize the maps generating these groups. From the
characterization we obtain a polynomial-time algorithm to represent the
elements of a binary vector space with respect to the hidden sum. Such
an algorithm can be used to exploit the trapdoor in a block cipher. Then
we design an efficient algorithm to perform the necessary preprocessing
on the components of a cipher for the exploitation of the trapdoor.
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1 Introduction

The affine general linear group acting on a vector space is a well-understood
mathematical object, for any field characteristic. Recently in an unpublished
preprint [6] the authors show that some of its subgroups play an important role
in cryptography. In particular, its elementary abelian regular subgroups can be
exploited to insert or detect algebraic trapdoors in some block ciphers. With
trapdoors we mean a hidden algebraic structure in the cipher which is known to
the designer, yet unknown to anybody else, including its unfortunate legitimate
users. Such a structure would allow an attacker with full knowledge to break the
cipher easily, while letting the rest of the cryptographic community trust the
security of the cipher.

These subgroups induce alternative operations ◦ on the message space V , so
that (V, ◦) results a vector space over F2. In [6], it is shown that we can use a
class of these operations, called hidden sums, to exploit the trapdoor.

In this paper we give an overview on the results obtained in the unpublished
preprints [4] and [6] regarding these hidden sums. In the first part, we report the
characterization, modulo conjugation, of their elements. This characterization
permits to determine a polynomial-time algorithm for representing the elements
of a space (V, ◦). Moreover, an attack in this context is practical. In the last
part we report the study, carried out in [4], on the problem of determining the
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possible maps that are linear with respect to these hidden sums. More precisely,
we provide an algorithm that takes as input a given linear map (with respect
to the usual XOR on V ) and returns the hidden sums for which this map is
linear also with respect to these. Our aim is to individuate a family of hidden
sums that can weaken the components of a given cipher, and to design a cipher
containing the trapdoor based on hidden sums.

2 Preliminaries and notation

For any positive integerm, we let [m] = {1, . . . ,m}. We write Fq to denote the
finite field of q elements, where q is a power of prime, and (Fq)s×t to denote the
set of all matrices with entries over Fq with s rows and t columns. The identity
matrix of size s is denoted by Is. We use

ei = (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
N−i

) ∈ (Fq)N

to denote the unit vector, which has a 1 in the ith position, and zeros elsewhere.
Let m ≥ 1, the vector (sub)space generated by the vectors v1, . . . ,vm is denoted
by Span{v1, . . . ,vm}.

Let V = (Fq)N , we denote by Sym(V ), Alt(V ), respectively, the symmetric
and the alternating group acting on V . In the following, with the symbol + we
refer to the usual sum over the vector space V . We denote by T+ = T(V,+),
AGL(V,+) and GL(V,+), respectively, the translation, affine and linear groups
with respect to +. Moreover, the translation with respect to a vector v ∈ V will
be denoted by σv : x 7→ x+v. We write 〈g1, . . . , gm〉 for the group generated by
g1, . . . , gm in Sym(V ). The map 1V will denote the identity map on V .

Let G be a finite group acting on V . We write the action of g ∈ G on a vector
v ∈ V as vg.

2.1 Translation based block ciphers

Most modern block ciphers are iterated ciphers, i.e. they are obtained by the
composition of a finite number ` of rounds. Here we consider a recent definition
[8] that determines a class large enough to include some common ciphers (AES
[10], SERPENT [1], PRESENT [3]), but with enough algebraic structure to allow
for security proofs.

Let V = (F2)N with N = mb, b ≥ 2. The vector space V is a direct sum

V = V1 ⊕ · · · ⊕ Vb,

where each Vi has the same dimension m (over F2). For any v ∈ V , we will write
v = v1 ⊕ · · · ⊕ vb, where vi ∈ Vi.

Any γ ∈ Sym(V ) that acts as vγ = v1γ1 ⊕ · · · ⊕ vbγb, for some γi’s in
Sym(Vi), is a bricklayer transformation (a “parallel map”) and any γi is a brick.
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Traditionally, the maps γi’s are called S-boxes and γ a “parallel S-box”. A linear
map λ : V → V is traditionally said a “Mixing Layer” when used in composition
with parallel maps. For any I ⊂ [b], with I 6= ∅, [b], we say that

⊕
i∈I Vi is a

wall.

Definition 1. A linear map λ ∈ GL(V,+) is a proper mixing layer if no wall
is invariant under λ.

We can characterize the translation-based class by the following:

Definition 2 ([8]). A block cipher C = {ϕk | k ∈ K} ⊂ Sym(V ), where K is
the set containing all the session keys, over F2 is called translation based (tb)
if:

– it is the composition of a finite number of rounds, such that any round ρk,h
can be written1 as γλσk̄, where
- γ is a round-dependent bricklayer transformation (but it does not depend
on k),

- λ is a round-dependent linear map (but it does not depend on k),
- k̄ is in V and depends on both k and the round (k̄ is called a “round
key”),

– for at least one round, which we call proper, we have (at the same time) that
λ is proper and that the map K → V given by k 7→ k̄ is surjective.

For a tb cipher it is possible to define the following groups. For each round h

Γh(C) = 〈ρk,h | k ∈ K〉 ⊆ Sym(V ),

and the round function group is given by

Γ∞(C) = 〈Γh(C) | h = 1, . . . , `〉.

An interesting problem is determining the properties of the permutation
group Γ∞(C) = Γ∞ that imply weaknesses of the cipher. A trapdoor is a hidden
algebraic structure in the cipher which is known to the designer, yet unknown
to anybody else, whose knowledge allows to obtain information on the key or to
decrypt certain ciphertexts.

The first paper dealing with properties of Γ∞ was published by Paterson
[11], who showed that if this group is imprimitive, then it is possible to embed a
trapdoor in the cipher. For a tb cipher in [8], the authors give sufficient conditions
to guarantee that the group Γ∞ is primitive, and the condition of proper round
is crucial. However, the primitivity of Γ∞ does not guarantee the absence of
trapdoors. Indeed, if the group is contained in AGL(V,+) (or a conjugated of
it), the encryption function is affine and once we know the image of a basis of
V and the image of the zero vector, then we are able to reconstruct the matrix
and the translation that compose the map.

1 we drop the round indices
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Remark 1. If T is an elementary abelian regular group, there exists a vector
space structure (V, ◦), where ◦ is the operation defined over V , such that T is
the related translation group. In fact, being T regular the elements of the group
can be labelled

T = {τa | a ∈ V },
where τa is the unique map in T such that 0 7→ a. Then, the sum between two
elements is defined by x ◦ a := xτa. Clearly, (V, ◦) is an abelian additive group
and thus a vector space over F2.

From Remark 1, we have that there exists a copy of AGL(V,+) for each
operation ◦ related to an elementary abelian regular subgroup of Sym(V ). In
the following, we use T◦, AGL(V, ◦) and GL(V, ◦) to denote, respectively, the
translation, affine and linear groups corresponding to an alternative operation ◦.

Then, we are interesting on investigating the problem of determining whether
Γ∞(C) is contained in a group AGL(V, ◦) for some operation ◦. If the latter
happens then ◦ is called a hidden sum.

Noting that the group Γ∞(C) of a tb cipher contains the group T+, from the
principal problem above we can individuate the following problems.

1. Determine the operations ◦ (equivalently the translation groups T◦) such
that T+ ⊆ AGL(V, ◦).

2. Determine if an attack is practical whenever Γ∞(C) ⊆ AGL(V, ◦) for a hidden
sum.

3. Given a parallel S-box γ and a mixing layer λ, determine the operations ◦
such that γ, λ ∈ AGL(V, ◦) or γλ ∈ AGL(V, ◦).

3 On hidden sum coming from subgroups of the affine
linear group

In this section we investigate the elementary abelian regular subgroups of
AGL(V,+). Using these subgroups, we present a class of hidden sums for which
an attack can be practical.

The following vector space plays an important role for studying the problems
above. Let T be any subgroup of the affine AGL(V,+) group, we can define the
vector space

U(T ) = {v ∈ V | σv ∈ T}.
A first results on the groups T◦ contained in AGL(V,+) is the following.

Proposition 1. Let V = (F2)N . Let T◦ ⊆ AGL(V,+) be an elementary abelian
regular subgroup. If T◦ 6= T+, then 2− (N mod 2) ≤ dim(U(T )) ≤ N − 2.

Proof. See Proposition 3.6 in [6] and Proposition 3.4 in [4].

Note that for every a, τa ∈ T◦ ⊂ AGL(V,+) can be written as κaσa for a
linear map κa ∈ GL(V,+). We will denote by Ω(T◦) = {κa | a ∈ V } ⊂ GL(V,+).
Moreover κa = 1V if and only if a ∈ U(T◦). The following result characterizes
the maps κa of a group T◦ ⊂ AGL(V,+) such that T+ ⊆ AGL(V, ◦), up to
conjugation. These groups are of interest for Problem 1 given in Section 2.
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Theorem 1. Let V = (F2)n+d, with n ≥ 2, d ≥ 1, and T◦ ⊆ AGL(V,+) be such
that U(T◦) = Span{en+1, . . . , en+d}. Then, T+ ⊆ AGL(V, ◦) if and only if for
all κy ∈ Ω(T◦) there exists a matrix By ∈ (F2)n×d such that

κy =

[
In By

0 Id

]
.

Proof. See Theorem 3.17 in [6].

Note that we can always suppose that U(T◦) is generated by the last vectors
of the canonical basis, as any group T◦ is conjugated, by applying a linear map,
to a group T◦′ such that U(T◦′) = Span{en+1, . . . , en+d} (see [6, Theorem 3.14]).

Remark 2. When U(T◦) is generated by the last vectors of the canonical basis,
the maps τei generate T◦, i.e. the canonical vectors form a basis also for the
vector space (V, ◦).

We give now a combinatorial result on the number of hidden sums contained
in the affine general linear group such that T+ ⊆ AGL(V, ◦) and dim(U(T◦)) = d.

Theorem 2. Let N = n+ d and

Mn,d = {T◦ ⊆ AGL(V,+) | T+ ⊆ AGL(V, ◦) and dim(U(T◦)) = d}.

Let q = 2d and define

µ(n, d) = q(
n
2) − 1−

n−2∑
r=1

(
n

r

)
(q − 1)(

n−r
2 )

and

ν(n, d) =

{
q(

n
2)
∏dn−1

2 e
j=1

(
1− q1−2j

)
, n even

(qn−1 − 2n−1)q(
n−1
2 )∏dn−2

2 e
j=1

(
1− q1−2j

)
, n odd

.

Then [
N

d

]
2

ν(n, d) ≤ |Mn,d| ≤
[
N

d

]
2

µ(n, d),

where
[
N
d

]
q

=
∏d−1
i=0

qN−i−1
qd−i−1

is the Gaussian Binomial.

Proof. See Proposition 5.6 in [6] and Proposition 3.3 in [4].

4 Suitable hidden sums for a practical attack

In this section we want to tackle Problem 2. Thus, we want to see if given
a hidden sum ◦ such that Γ∞ ⊆ AGL(V, ◦), it is possible to attack the cipher.
We will show that if the hidden sum is such that T◦ ⊆ AGL(V,+), then a
polynomial-time attack is possible.
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Let T◦ ⊆ AGL(V,+) be such that T+ ⊆ AGL(V, ◦) (since we are supposing
T+ ⊆ Γ∞ ⊆ AGL(V, ◦)). Consider the vector space U(T◦), which has dimension d
for some d ≥ 1. Let g ∈ GL(V,+) be such that U(T◦)g = Span{en+1, . . . , en+d} =
U(T�), with T� = g−1T◦g. From Theorem 1 we have that the maps in T� corre-
sponding to the canonical basis are

κei
σei

=

[
In Bei

0 Id

]
+ ei,

for some Bei ∈ (F2)n×d. Moreover from Remark 2 we have also that e1, . . . , eN
is a basis of (V, �) and to write v ∈ V as a linear combination of these with
respect to the sum �, i.e. v = α1e1 � · · · � αNeN , we can use Algorithm 1.

Algorithm 1
Input: vector v = (v1, . . . , vN ) ∈ V
Output: coefficients α1 . . . αN .
[i] λi ← vi for 1 ≤ i ≤ n;
[ii] v′ ← vτα1

e1
· · · ταn

en
;

[iii] αi ← v′i for n+ 1 ≤ i ≤ n+ d;
return α1, . . . , αN ,

where τei is the translation x 7→ x � ei and the notation xτ bv, with b ∈ F2,
denote either xτv (when b = 1) or x (when b = 0). Thus, let vi = eig

−1 for
all i, applying Algorithm 1 to vg we can obtain the combination of vi’s w.r.t
the sum ◦ of the vector v. The complexity of this procedure is O(N3). Indeed,
we multiply a vector of length N for an N × N matrix (which has complexity
O(N2)) for n ≤ N times.

We explain why Algorithm 1 produces the requested coefficients. Note that
to find the coefficients such that v = α1e1 � · · · � αNeN is equivalent to finding
α1, . . . , αN such that vτα1

e1
· · · ταN

eN
= 0. Now, from the form of the matrices κei

’s
we can note that the first n entries of the vector v are left unchanged by κei

for
all i. Then, to delete a 1 in the entry j ≤ n of v we need to apply the map τej

,
which explains step [i]. Now, vτα1

e1
· · · ταn

en
(step [ii]) will produce a vector with

the first n entries equal to 0 and, being τei = σei for n+1 ≤ i ≤ n+d, we obtain
the last coefficients from step [iii].

4.1 Hidden sum attack

Let C = {ϕk | k ∈ K} be a tb cipher such that Γ∞ ⊆ AGL(V, ◦) for some
operation ◦, and also T◦ ⊆ AGL(V,+). Let dim(U(T◦)) = d. Let g ∈ GL(V,+)
be a linear permutation such that U(T◦)g = Span{en+1, . . . , en+d}. Denote by

[v] = [α1, . . . , αN ]

the vector with the coefficients obtained from Algorithm 1. Let ϕ = ϕK be
the encryption function, with a given unknown session key K. We are able to
mount an attack, computing the matrix M and the translation vector t defining
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ϕ ∈ AGL(V, ◦).
Choose the plaintext 0ϕ,v1ϕ, . . . ,vNϕ, where vi = eig

−1, and compute [0ϕg],
[v1ϕg], . . . , [vNϕg], since the translation vector is [t] = [0ϕg] and the [eiϕg]+[t]’s
are the matrix rows. In other words, we will have

[vϕg] = [vg] ·M + [t], [vϕ−1g] = ([vg] + [t]) ·M−1,

for all v ∈ V , where the product row by column is the standard scalar prod-
uct. The knowledge of M and M−1 provides a global deduction (reconstruc-
tion), since it becomes trivial to encrypt and decrypt. Moreover from [vg] =
[α1 . . . , αN ] we obtain that v = 0τα1

v1
· · · ταN

vN
, where τvi : x 7→ x ◦ vi. So, we

need only N + 1 plaintext to reconstruct the cipher and the cost of this attack
is given from the algorithm above to compute the combinations plus the cost of
N + 1 encryptions.

Our discussion has thus proved the following result.

Theorem 3. Hidden sum trapdoors coming from translation groups such that
T◦ ⊆ AGL(V,+) are trapdoors, that allow for any key to perform a global deduc-
tion attack in O(N3) encryptions.

5 On hidden sums for linear maps

In this section we investigate Problem 3 given in Section 2 page 4. In partic-
ular we want to see if, for a given λ ∈ GL(V,+), it is possible to individuate an
alternative sum ◦ such that λ ∈ GL(V, ◦).
Proposition 2. Let T◦ ⊆ AGL(V,+) and λ ∈ GL(V,+) ∩GL(V, ◦) then U(T◦)
is invariant under the action of λ, i.e. U(T◦)λ = U(T◦).

Proof. See Proposition 4.1 in [4].

Proposition 3. Let T◦ ⊆ AGL(V,+) and λ ∈ GL(V,+). Then λ is in GL(V,+)∩
GL(V, ◦) if and only if for all x ∈ V we have

κxλ = λκxλ, (1)

where τx = κxσx.

Proof. See Proposition 4.2 in [4].

Now we will characterize the linear maps that are also linear for an operation
◦ such that U(T◦) is generated by the last elements of the canonical basis.

Proposition 4. Let V = (F2)N , with N = n + d, n ≥ 2 and d ≥ 1. Let
T◦ ⊆ AGL(V,+) with U(T◦) = Span{en+1, ..., en+d}. Let λ ∈ GL(V,+). Then
λ ∈ GL(V,+) ∩GL(V, ◦) if and only if

λ =

[
Λ1 ∗
0 Λ2

]
,

with Λ1 ∈ GL((F2)n), Λ2 ∈ GL((F2)d), ∗ is any matrix and for all x ∈ V
BxΛ2 = Λ2Bxλ (see Theorem 1 for the notation of Bx).
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Proof. See Proposition 4.3 in [4].

Remark 3. From the propositions above, if we want to find an operation ◦ that
linearizes a linear map λ ∈ GL(V,+), i.e. we want to enforce[

Λ1 ∗
0 Λ2

]
∈ GL(V, ◦),

then we have to construct some matrices Bx such that BxΛ2 = Λ1Bxλ for all
x. Moreover, as the standard vectors ei’s form a basis for the operation ◦, then
we need to individuate only the matrices Bei

, so that Bei
Λ2 = Λ1Beiλ, and in

particular that

Bei
Λ2 = Λ1Beiλ = Λ1

(
n∑
i=1

ciBei

)
,

where c1, . . . , cn are the first components of the vector eiλ.

Algorithm 2
Input:

λ =

[
Λ1 ∗
0 Λ2

]
,

with Λ1 ∈ GL((F2)n), Λ2 ∈ GL((F2)d)
Output: all possible hidden sums such that:

– T◦ ⊆ AGL(V,+), T+ ⊆ AGL(V, ◦),
– U(T◦) contains en+1, ..., en+d,
– λ ∈ GL(V, ◦).

ALGORITHM STEPS:

I) Consider the canonical basis e1, ..., en+d and compute e1λ, ..., enλ
II) Solve the linear system given by the equations:

1. for all i = 1, ..., n

BeiΛ2 = Λ1Beiλ = Λ1

(
n∑
i=1

ciBei

)
,

(where c1, ..., cn are the first components of the vector eiλ).
2. for all i = n+ 1, ..., n+ d

Bei = 0,

3. for all i = 1, ..., n
ēiBei = 0,

(here ēi is the truncation of ei with respect to the first n coordinates)
4. for all i, j = 1, ..., n

ēiBej
= ējBei

,
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III) return the solutions {Bei}i=1,...,n+d.

Proposition 5. The time complexity of Algorithm 2 is O
(
n6d3

)
and the space

complexity is O
(
l · 2d−1n2

)
where l is the dimension of the solution subspace.

In Table 1 we report some timings for different dimensions of the message space
V , fixing the value of d equal to 2.

Dimension of V n, d Timing in seconds
64 62, 2 32.620
80 78, 2 84.380
96 94, 2 188.200
112 110, 2 338.590
128 126, 2 616.670

Table 1. Computation timing for a Mac Book Pro 15” early 2011, 4 GB Ram, Intel i7
2.00 Ghz.

In [4], we apply our algorithm to the PRESENT’s mixing layer using the
parameters n = 60 and d = 4. The time required to compute the operation space
O is ∼ 10.420 seconds and it is generated by 2360 60-tuples of 60× 4 matrices.
So the number of operations that linearize the mixing layer of PRESENT, is at
least |O| = 22360.

6 Final remarks and related works

In this paper we have collected the results of two unpublished paper [4,6]
about the maps generating some alternative translation groups, which may be
used to embed a trapdoor in some block ciphers. We have presented a possible
attack using these algebraic structures. Finally we reported an algorithm to
individuate hidden sums for the mixing layer of a block cipher.

In [7] the authors give a cryptographic characteristic for the S-boxes, called
Anti-crookedness (AC) in [5] and studied in [2], that permits to avoid the case
Γ∞ ⊆ AGL(V, ◦) for any operation ◦. On the other hand, if a permutation γ is
linear with respect to some hidden sum ◦ then the set

Aγ = {a | Im(Daγ) is an affine space} ∪ {0}

contains the space U(T◦) (Im(Daγ) denotes the image of the derivative of γ in
the direction a). In the case of the PRESENT’s S-box we have that it is not AC,
and for such a function the set Aγ = {(0000), (0001), (1110)}. Then, considering
the parallel S-box γ′ of PRESENT, we have Aγ′ = (Aγ)16. If we want to search
for a possible hidden sum we need to consider all spaces candidate for U(T◦),
which means to look for all spaces that can be included in Aγ′ . From Theorem 2,
for any of these spaces we can create at least ν(64− d, d) different hidden sums
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(d is the dimension of U(T◦)). For example, taking d = 2, for any space U(T◦)
we have ∼ 23781 possible hidden sums. Thus, it may be infeasible to check if a
block cipher suffers of the hidden sum trapdoor, while it is easy for the designer
to insert the hidden sum.

A class of operations defined here is used in [9] to weaken the nonlinearity of
well-known APN S-boxes. In particular, in [9] the authors present a differential
attack with respect to hidden sums.

In conclusion, we believe that the investigation of hidden sums introduced
in [5] for the first time (and now well under way with many authors involved)
is important both for individuating new cryptographic criteria (to design block
ciphers) and for proposing new attacks on them.
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