
SoK: Modelling Data Storage and Availability

Carlo Brunetta1 and Massimiliano Sala2

1 Independent Researcher, Bagnolet, France brunocarletta@gmail.com
2 Department of Mathematics, University of Trento, Trento, Italy

massimiliano.sala@unitn.it

Abstract. Our digital society’s ever-increasing demand for data stor-
age has driven up costs and security concerns, particularly with the shift
towards outsourced third-party storage providers. This transition raises
critical issues regarding privacy, trust, and data availability, i.e. the as-
surance that stored data remains accessible and retrievable.
This paper introduces a novel model that abstracts data-storage mech-
anisms by identifying distinct entities, each with a specific role in man-
aging the data flow. Our model is designed to describe storage mecha-
nisms, ranging from centralized to fully-decentralized systems, together
with some data availability guarantees.
We highlight the underlying trust assumptions, providing a guideline
for understanding application requirements and systematizing knowledge
on data storage and availability. To illustrate our model usefulness, we
examine several real-world data-storage-and-availability solutions, clas-
sifying them within our model as well as showcasing advantages and
disadvantages. We conclude by comparing these solutions, which lets us
propose open questions and future research directions for data-storage-
and-availability methodologies.

Keywords: Data Storage · Data Availability · Decentralization · blockchain

1 Introduction

Our society has become deeply integrated with digital services designed to un-
derstand our needs, anticipate them and better align with our individual re-
quirements. This level of customization is the new expected norm, shaping our
interactions with technology and influencing our daily lives. The vast amount
of data we generate and own is the driving force behind this digital experience.
This data describes everything about our online activities and can come from
any device connected to the web. This sheer volume of information highlights a
significant engineering challenge: how to handle this ever-growing data flow.

Data management is not merely about quantity, since data might be highly
confidential, thus requiring robust privacy guarantees and clear access controls,
to ensure that only authorized entities can obtain or modify such confidential
data. Moreover, despite its digital representation, data must be physically stored
somewhere. This fundamental requirement is sometimes neglected, but it is cru-
cial for ensuring the availability, reliability, and integrity of data. These aspects
are mere examples of the multifaceted nature of data management.

https://orcid.org/0000-0001-9363-7585
https://orcid.org/0000-0002-7266-5146


2 Brunetta–Sala

Our Contribution. This paper aims to introduce a novel abstract model for
both the data-storing process and the availability-verification process. Our model
identifies several roles and procedures involved in data storage, providing a clear
framework for comparing storage strategies. By design, our model categorizes
storage-and-availability processes, ranging from local and centralized solutions
to fully-decentralized protocols, together with different levels of trust, from high-
trust to trust-less domains.

Our model provides a taxonomy of the solutions’ landscape, enabling a better
understanding of each approach. To illustrate this, we provide examples of real-
world storage-and-availability solutions and classify them into the model, so that
we can discuss the pros and cons of alternative methodologies. Our ultimate
goal is to provide a guideline to empower developers and engineers to make
informed choices on the most appropriate data storage solution required by their
applications.

Related Work. Our paper joins a collection of recent systematization-of-
knowledge works in the area of data storage and availability. Unsurprisingly
given the strong link between blockchain technology and cryptography ([24],[10]),
they mainly focus on blockchain-based approaches. Raikwar et al. [22] analyse
the cryptographic primitives/protocols used in the blockchain domain, where
some are related to the confidential storage and availability of stored data, e.g.
they explain proof of retrievability (PoR), how this primitive is used to verify the
retrievability of stored data, and they describe a specific instantiation for Bitcoin
called Retricoin [25]. Zahed Benisi et al. [32] provide a comprehensive overview
on the distributed and decentralized storage solutions with a major focus on the
possible applications, e.g. rollups, outsourcing data storage while maintaining
verifiable traceability, as well as some open challenges. Ernstberger et al. [11]
provide a thorough analysis on data sovereignty, i.e. the ability to have control
on the data, and how this is achieved or guaranteed in decentralized solutions. Li
et al. [16] collect known decentralized storage solutions and provide a comparison
of the technical cryptographic primitives/protocols they use.

We complete these works with our abstract model which provides a more
precise characterization of each solution and which can categorize any solution,
even centralized ones, thus creating a guideline for evaluating data-storage sys-
tems. All of these applications are extensively described in further works such as
Gudgeon et al. [12] and their taxonomy of layer-2 solutions, where decentralized
storage with rigorous availability verification is paramount.

Paper Organization. Section 2 describes our data storage model and clas-
sifying properties , of which we provide an explanation. It also includes some
assumptions, conjectures and (possibly mandatory) cryptographic primitives.
Section 3 lists real examples, how they are designed and how they fit into the
data storage model. We place a strong emphasis on decentralized solutions and
their design choices. Section 4 summarizes our findings by providing a com-
parison of the previous examples, along with some open questions and future
research directions.



SoK: Modelling Data Storage and Availability 3

2 Abstract Data Storage Model

This section introduces our data storage model, the entities composing it and
the essential properties used to classify applications. Regarding the essential
properties, we focus on data availability being the main requirement for any
realistic application, i.e. if data is not available, no other property makes sense.

As depicted in Figure 1, our model identifies conceptually different entities
representing separated data-handling phases:

▷ Owner O: this entity owns the data and is the one requesting the data to
be stored. The owner is responsible for preparing the data to store and for
finding a contractual agreement with other entities. This agreement outlines
how the handling will be conducted and the guarantees that must be pro-
vided, e.g. encryption requirements, distribution process to multiple storing
nodes, availability guarantees, etc.

▷ Handler H: the handler plays the role of a file-system, i.e. it coordinates the
owner’s storage requests, finds the appropriate storage nodes, keeps track of
the location of stored data, probes the storage for availability, etcetera.

▷ Storage Node (storer) S: this entity is responsible for physically storing the
data and for retrieving it whenever requested by the handler.

▷ Retriever R: the retriever is the designated entity that receives the owner’s
data from the handler. The retriever is allowed to request the designated
data from the handler.

All these entities and their differentiated roles must coordinate to allow the
correct, safe and trustworthy data storage. This coordination can be classified
by specific flavoured properties, later discussed in detail:
◦ Access Control : describing who has the right to access the data and if this

data must preserve confidentiality during the storage, either from potential
leaks or from a malicious handler/storer. All these are effectively metadata
policies that the owner requests as part of the storage agreement. The access
control allows a clear distinction of the scenarios where the receiver and the
owner are the same entity or not.

◦ Data Handling Technique: the Handler has the task of mapping the data’s
retrieval request to a concrete storage location, thus creating a mapping
between requests and where data is stored, basically a file-system instan-
tiation. This process can be made via as a centralized, distributed or full
decentralized protocol.

◦ Data Storage Technique: once the data arrives at the Storage Node, this must
effectively be stored on a physical medium. Similarly to data handling, this
phase can be made via either centralized, distributed or decentralized solu-
tions. Furthermore, each storage node might use different storing methodol-
ogy to provide a higher level of resilience against faulty storage media.

◦ Proving Data Availability : whenever the data is stored, the owner (or re-
ceiver) might request a proof that the data is available for retrieval. This
proof can be used to coordinate a recovery procedure, to halt rewarding to



4 Brunetta–Sala

Owner O

Handler H Storer S

Retriever R

send data

retrieve data

store
data

contract

availability?

PoS proofs

Fig. 1. Our abstract storage model with the fundamental actions between the entities
as arrow. A major (blue) highlight of the data-flow is given.

the storage node, to alert the receiver for the lost of stored data or for other
application-oriented responses.

2.1 Centralized, Distributed and Decentralized

Except for the owner which we assume to always be solo, all the other entities
can be composed of single or multiple parties, hence introducing a trade-off
between trust and resilience. Having single or multiple parties suggests concepts
such as centralized, distributed and decentralized and, despite being often used
interchangeably, we make a clear distinction between the terminologies:

▷ a centralized entity is defined by a single party representing the whole;
▷ a distributed entity is a selected group of parties where new members might

join only according to strict rules (to build up a trust baseline);
▷ a decentralized entity is composed by an open group of parties which have

limited trust between each other since everyone is (mostly) free to join.

In other words, a centralized entity is composed by a single party, while both
a distributed and decentralized entity are composed by several parties interact-
ing with each other to accomplish their goals. The difference between distributed
and decentralized is found in the underlying trust between the parties and in the
related enrolment’s procedure. We define an entity to be decentralized if anyone
can join the entity without specific prerequisites or trust requirements, similarly
to how anyone can join a decentralized blockchain network by merely running a
specific protocol’s code. While, if the enrolment’s procedure comprehends only
selected individuals, we define such an entity to be distributed because the mem-
ber selection process might not follow fair or transparent principles.

2.2 Data Availability

A fundamental requirement for any application is data availability (DA) which
can be described as the concept that “data must be proved available” meaning
that it should be possible to prove that any data stored is indeed available and
can be retrieved by the designated receiver. Differently from other works, we use



SoK: Modelling Data Storage and Availability 5

interchangeably the concept of availability and retrievability since, in our model,
if data is retrievable by the correct receiver, then data must be available. For
completeness, data immutability is an orthogonal fundamental property which
we assume to hold at all time since “data should not be (maliciously) modifiable”
guaranteeing the retrieval of the original data.

Before moving to known mechanism used to guarantee data availability, let
us collect precise goals or properties for the proving mechanism:

DA.1 formal verification denotes that the proving mechanism provides a compu-
tationally verifiable proof of data availability, e.g. by using well-established
cryptographic primitives such as Merkle trees;

DA.2 timed proving indicating that the verification procedure should formally
prove the data availability at the exact time of proving and not before,
i.e. the proof request acts as an unpredictable challenge forcing the proving
mechanism to maintain the data available;

DA.3 selective verification indicating the possibility to prove the availability of a
selected portion of the data. This can be useful when multiple files are stored
and only a subset of them must be checked or if the data is too heavy, e.g.
the availability proof might be reduced to uniform randomly selected pieces,
thus providing a measurable probability of the whole data being available;

DA.4 distributed storage meaning that storage should be distributed between dif-
ferent nodes that interact to improve efficiency, rather than merely repli-
cating the storage. Adding a network of storing nodes introduces security
and protocol’s complexity with the advantage of (hopefully) achieving more
advanced features, e.g. threshold procedures or costs offloading;

DA.5 proving resilience denoting that if multiple storage nodes actively cooperate
to store data, they are able to prove the data’s availability even if some of
the nodes are unavailable;

Important aspects when considering data availability are the data confiden-
tiality (depending on the trust model required), the time-frame considered or
the storage duration for which the data is requested to be available (outside this
window, there might not be any guarantees).

Any DA solution is defined by some general procedures, designed to commit
some sort of verification material connected to the data stored, which create a
random computational challenge for the storer that can be answered only if they
have the stored data available.

In the literature, there are many examples of protocols providing DA guar-
antees, each with a specific twist required by their application [20, 26, 21, 7], e.g.
provable-data-possession [2], proof-of-storage [4, 31], proof-of-retrievability [25],
proof-of-ownership [13], proof-of-space-time [19, 33, 3], or similar [8]. While each
solution has its own techniques, we identify some common ones:

◦ erasure codes [6] are often used to extend data into a longer version, from
which some shards are generated and distributed to some storage nodes. The
main reason is that by correctly tweaking the code’s parameters, the data
might be retrievable even with a smaller amount of shards, hence providing
resilience against many attacks on/from the storage nodes.



6 Brunetta–Sala

◦ Merkle trees (or similar hash-based data structure) are used to compress DA
proofs based on hash-evaluation into a more compact format while providing
paramount immutability guarantees. These solutions offer high throughput
at the cost of limited feature-extensions capability, e.g. many solutions have
private verifiability (only the receiver can verify the DA).

◦ Zero-Knowledge (ZK), as in succinct non-interactive/transparent argument
of knowledge (SNARK/STARK) [17], provide a more computationally-expensive
proving protocol at the benefit of allowing higher degree of expressibility. For
example, differently from the hash-based solutions, many ZK solutions are
designed to permit public DA verifiability.

◦ Commit-and-open solutions, especially via Kate et al. [15] polynomial com-
mitment scheme, where the idea is to encode data into a secret polynomial,
which is publicly committed and provided to the storage node. To generate
a DA proof, the receiver requests the evaluation of the polynomial on some
challenge points, which allows the verification of the polynomial’s knowledge
(this knowledge implies the availability of stored data).

Typically, these solutions are considered in a DA layer which is the network
of interacting entities that creates, handles and verifies the DA proof requests. In
the vast majority of known approaches, this network is based on a (public) ledger
to allow for a sequential and traceable transcript of the stored data’s history. This
ledger also provides an easier computational control of the verification process
by means of smart contracts (or similar programs) that automatically verify DA
cryptographic proofs.

2.3 Rewarding Mechanism

Both storing and proving data availability have a non-negligible computational
cost, which must be considered in applications, thus requiring the introduction
of a rewarding mechanism, i.e. how the effort by any entity should be rewarded
(and by whom).

Intuitively, the owner O and retriever R should pay for the storage and
availability service, but they should be compensated by the handler if their
data is lost (or turns out to be not available in the agreed availability-window).
This suggests O and R pay the handler H, the storer S , or both, depending
on the entities’ independence and the (agreed) work compensations. The total
compensations should consider: the effective costs for the data storage, all the
DA proofs computed by the storage nodes, the handler’s proof verification and
also some management overhead.

As later showcased by the examples in Section 3, the burden of these costs can
be effectively addressed in centralized or distributed scenario, where payments
can be done at the final verification of the correct execution of the service and,
if something goes wrong, the entities are supposed to follow the agreed contract
(which is often legally binding). For example, if S loses the data, R and O
will request a refund from H which must compensate them with an amount
demanded to S for breaching the agreement between S and H.



SoK: Modelling Data Storage and Availability 7

The decentralized scenario follows the same payments and claims require-
ments but, depending on the technology used to obtain the decentralization, the
costs might be required to be provided upfront by O . This problem demands
a stricter automatic mechanism to ensure the correct protocol’s execution. The
same might apply to H or S whenever involved in the DA verification process,
e.g. these entities might lock a deposit that will be returned if the verification
is done correctly (together with the appropriate compensation for the work).
Otherwise, the deposit is used as collateral, i.e. to refund O for the data loss.

The rewarding mechanism must therefore provide a cleverly designed in-
centive that avoids favouring malicious behaviour, otherwise malicious entities
would never be punished. Furthermore, it is convenient to publicly maintain
an immutable trace of the rewards, at the advantage of a traceable reputation
mechanism, and to favour algorithmically-defined procedures that automatically
partitions the rewards, e.g. via smart contracts.

3 Classifying Known Solutions

In this section we classify several known solutions in our model. We also pro-
vide explanations on the used methodologies/technologies, together with: some
considerations on costs, the control over data and the required trust level. The
examples are sorted according to the degree of decentralization.

3.1 Autonomous Storage

The simplest solution is to have a unique party acting in all the entities roles,
i.e. the party self-hosts and manages its own data storage and availability.

Such a solution is clearly fully centralized, while confidentiality and resilience
highly depend on the choices made. For example, the storage can be setup as a
RAID system to increase redundancy and resilience against failing hard-drives.
Availability verification does not require any specific procedure, since the owner
has direct (or close enough) access to the storage system. All the costs, both
hardware and management, are on the owner. There is no effective trust required,
except possibly for the hardware itself, which might contain a backdoor.

3.2 Self-Handled Storage

The second-simplest solution considers an owner that outsources its storage to
either a single or multiple storage nodes, in some sort of storage renting where
the owner takes the additional role of the data handler.

We classify self-handled storage to be a centralized handler with distributed
storage. DA mechanisms can be implemented since they are specific protocols. In
this scenario, the data owner autonomously decides to reward verified DA proofs
and all the rewarding rights/guarantees are executed as per contract. To have a
more algorithmic rewarding mechanism, the DA verification might be executed
over any public ledger and with a smart contract. On the other hand, this latter



8 Brunetta–Sala

idea would defy the purpose of keeping-it-simple, since it would turn the whole
system into a sort of decentralized storage solution, discussed later.

3.3 Cloud Storage

Whenever the data owner outsources the data handling to an either centralized
or distributed entity, the scenario depicts the typical cloud storage service where
users pay a cloud for storage space without any responsibility on how to pre-
pare data for storage. Usually in such solutions, the storage nodes are under the
full control of the handler, which is a unique bigger entity that coordinates the
storage as it better fits its infrastructure. This leads to more efficiency, as for
example a storage contract with fewer retrievability guarantees creates an op-
portunity for the cloud server to save in storage-hardware costs, with the saving
going for investment in some other parts of its system (e.g., cyber security).

Data availability proofs are usually not provided for cloud storage service,
since any data loss is often handled according to some contractual agreements
(e.g., monetary compensation via an insurance). Yet, this cost-efficient strategy
relies on completely trusting the cloud’s promise to keep the data available.

Similarly to self-handled storage, we classify any common cloud storage to be
a centralized handler with distributed storage or distributed handler and storage.
DA guarantees are (usually) not provided because a legally binding contract is
often used to handle the scenario of a data loss. Internally, most probably the
cloud storage services have mechanisms to distribute the stored data to minimize
space costs and to create redundancy to verify that all the data is available (DA.4,
DA.5). Unfortunately, this information is not provided to the data owner.

3.4 Decentralized Storage

The final class considered are decentralized storage solutions, commonly referred
as data availability layers. The conceptual difference from the other examples
is that anyone can join the decentralized network by providing computational
power for data handling or storage space. However, data availability verification
is paramount, since there is no underlying trust among potentially anonymous
parties. These observations lead to consider a public ledger that algorithmically
coordinates at least the reward protocol (if not the entire system), which must
compute and distribute the economic incentives to honest-behaving entities.

The management costs are obviously higher than those of other solutions,
since the coordinating protocols must build trust from scratch, which is known
to be a very expensive process. Fortunately, the security guarantees are stronger,
formally proven and verifiable (at least in principle). Additionally, the rewards
themselves, typically awarded via cryptocurrencies or specific crypto-tokens, can
increase their intrinsic value with the increase of demand for the decentralized
storage service. The value growth pushes more participation in the storage ser-
vice, providing higher stability and resilience for the underlying decentralized
network.



SoK: Modelling Data Storage and Availability 9

Differently from other solutions, a decentralized storage based on a public
ledger can more easily be used for roll-ups scaling mechanism. With a roll-up we
mean a protocol aiming for a higher transaction throughput by performing an
aggregation of several transactions into a single transaction. We consider only
roll-ups that also provide an aggregation proof that is effectively reported and
verified (possibly on the main ledger). Any such (aggregated) transaction plus
its proof needs significantly less space than all initial transactions combined.
This space saving opens the door to the scaling down of transaction throughput
on the main blockchain. Without entering into the discussion of computational
costs for such scaling solutions, which is abundantly discussed in the research
community (see e.g., [12, 14, 23]), in any case the initial transactions must be
stored somewhere (i.e., in a DA) and must remain available for verifiers, who can
determine later the correctness of the aggregated transaction and its proof.

From the extensive solution space of DA layers [1, 26, 32, 7, 16], for our
analysis we select Storj [29], FileCoin [21], Avail [5], Sia [28], Arweave [30] and
Celestia [9],checking their techniques to achieve DA guarantees.

Storj. Storj is a cloud-storage service that allows users to store their data in a
distributed cloud system. Storing devices are awarded for the space (and time)
provided and used. Storj’s network is composed by three types of nodes: clients
of the service, Storj’s nodes, which in practice compose the DA layer, and some
special network’s coordinators, which keep note on both the storage network’s
distribution and the rewards accrued by the network’s nodes.

From a technical point of view [29], the owner O encrypts via a symmetric
encryption scheme, e.g. AES256− CTR, their data m and obtains an encrypted
ciphertext c which is split into specific-size shards {ci}i∈I . For each shard, the
storage node S provides a root node and a specific tree level, so that the owner
instantiates a proof-of-retrievability (PoR) by computing, intuitively, a salted
Merkle tree with all shards of O’s interest. To allow resilience against failing
storage nodes, Storj suggests the shard to either be replicated to multiple nodes or
to use erasure-encoding schemes. To select S, Storj is based on a distributed hash
table called Kademlia [18], which creates and maintains a distributed message
routing among nodes, together with some security guarantees. This primitive
allows the association of a unique shard’s identifier, e.g. a digest of the shard,
with a unique node S that is responsible for the storage, up to coordinated
modifications to the distributed hash table’s key-value entries.

The DA verification is done via a challenge-response protocol, where O pro-
vides to S a random salt used during the PoR’s initialization. If the file is avail-
able, S can provide a Merkle proof thus guaranteeing the retrievability of its
shard. The verification process is not automatic and it is intrinsically limited by
the number of salt values chosen during initialization.

Regarding the handler’s role, Storj considers a software solution that should
facilitate networks communications together with the contractual agreements
with the storer for their service (which are coordinated on a public ledger).
Their idea is to detach such responsibilities to a software, which can either be
hosted locally or outsourced to a trusted party.



10 Brunetta–Sala

We classify Storj as a centralized handler with decentralized storage able to
provide non-timed formal DA proofs of the whole encrypted data (DA.1). The
storage is distributed between the nodes and can be made more resilient (DA.4,
DA.5). Access control is completely left to the owner’s control and, without major
modification to the protocol, it is not trivial to integrate a protocol that allows
new access permissions after-storing, e.g. via proxy re-encryption.

Arweave. Arweave [30] is a decentralized data storing protocol that aims to
provide the infrastructure for the permaweb, i.e. a decentralized version of the
web where content cannot be easily removed, censored or modified (because
distributed over multiple supposedly-independent nodes). The protocol defines
an independent blockchain based over a custom proof-of-work mechanism. Any
transaction contained in the block defines either some exchange of cryptocur-
rency between wallets (e.g. payments) or a data transaction, i.e. a transaction
indicating that some data is requested to be stored by the network (once the
transaction is validated, the network distributes the storing of its data).

Arweave opts for an ad-hoc protocol to seek maximal usage efficiency while
maintaining storage and computational costs relatively low, at the cost of a
more complex tokenomics design (which is well motivated in their documenta-
tion [30]). The core DA verification is executed periodically (approximatively
every two minutes) via a Succinct Proof of Access (SPoA) that acts similarly
to Merkle-tree/hash-based PoS primitive by providing the proof for the whole
Merkle-path for some challenged leaf. Differently from other solutions, SPoA is
mainly designed to be used in more complex protocols able to prove the avail-
ability of replicated data on random offsets and time, by means of a verifiable
delay function (VDF). We classify Arweave as a decentralized handler and storage
system, designed over an ad-hoc blockchain, which provides timed DA proofs
verified by the network and used to mine the next block (DA.1, DA.2, DA.3).
Each node decides what data to replicate based on its country’s legislation and
some tokenomics incentives, needed for the replication of less distributed data
(DA.4, DA.5).

FileCoin. FileCoin [21] is a decentralized storage framework that introduces an
economically incentivized mechanism on top of the InterPlanetary File System
(IPFS) [27], i.e. a decentralized peer-to-peer storage and retrieval network mostly
used for decentralized web services. Differently from Storj, FileCoin provides the
rewarding infrastructure on top of the already existing IPFS storage layer.

Technically, such an infrastructure is based on a public ledger that stores the
agreements between owners and storage nodes. These agreements are created via
a bidding procedure. More specifically, the owner creates an order specifying the
storage and availability requirements, while the storing nodes bid to win the deal
which is agreed between the parties via its mutual signature. All the storage costs
are therefore independently agreed upon between owner and storage nodes. The
protocol enables the handlers to be rewarded for both maintaining the different
data-structure required and providing security and fairness guarantees in case



SoK: Modelling Data Storage and Availability 11

of disputation, e.g. if after some time, the stored data is not available or cannot
be retrieved.

The IPFS provides addressable storage-location, that is, any file in the peer-
to-peer system can be uniquely identified by the entire network. Such an identifi-
cation is specified in the deal, thus clarifying the logical position where the data
must be stored. Notably, the file retrieval can be done off-chain by exchanging
data chunks for micropayments that can be reported to the ledger for the correct
reward (which is managed by the handlers’ decentralized network).

Regarding the DA, FileCoin provides a proof-of-spacetime primitive that cre-
ates PoS proofs for a chosen period, i.e. a proof that the data is retrievable for a
specifically chosen window of time. The main idea is to exploit more computa-
tional time for the proof generation the proof, while reducing the communication
costs (this cost reduction is especially notable when compared with the periodical
execution of an entire PoS verification round). Intuitively, the primitive sequen-
tially generates challenges from three inputs: an initial challenge, a counter and
the current interaction proof. The computed challenge is used to compute the
PoS Merkle proof, in the same spirit as Storj’s one, which is the input for a
zero-knowledge SNARK that compacts the proof. Providing “time guarantees” is
obtained by requiring the proving interaction to be executed t times which would
require noticeable computational cost (which translates to wall-clock time).

We classify FileCoin as a decentralized handler with decentralized external
storage (IPFS) that can provide timed DA proofs verified by the network (via
smart-contracts) of the whole or partial data according to IPFS’s file management
(DA.1, DA.2, DA.3). Even if the storage is distributed over the IPFS’s network,
there are no (concrete) threshold storing mechanism, rather, the resilience is
obtained by having a large replicating network. As per FileCoin, access control
is completely left to the owner’s control.

Sia. Sia [28] is a framework based on a dedicated blockchain where storage con-
tracts are agreed upon of which design reassembles the Bitcoin blockchain with
major differences on the transaction format and goals. In particular, Sia’s trans-
action does not consider a scripting language and mainly focuses on providing
the use of a multi-signature scheme where contracts, DA proof and contract up-
dates are the only possible encoded messages. The DA verification are defined
using a hash-based PoS and the framework allows for periodic release of rewards
without interaction from the data owner, i.e. the contract defines the signing
rules for the automatic rewarding of the storage node.

We classify Sia solution as a decentralized handler with a decentralized peer-
to-peer storage that provides DA’s guarantees on the whole or partial data (DA.1,
DA.2, DA.3). As per protocol definition, the storage is not natively distributed,
i.e. multiple contracts must be created and the data must be appropriately han-
dled to achieve a somewhat threshold reconstruction mechanism.

Avail. Avail [5] introduces a framework for unifying blockchain networks. For
our work, we focus on the underlying DA layer proposed with major interest in
how data is prepared and their DA verification mechanism. Avail’s DA layer is



12 Brunetta–Sala

based on a decentralized blockchain where storage nodes and handlers, called
validators, maintain trace of all the stored data and agreements between owners
and storage nodes made via smart contracts, similarly in spirit to FileCoin but
with a different approach because Avail is not based over IPFS.

The major technical difference is that Avail’s ledger stores, together with the
entities agreements, the effective DA verification protocol’s transcription, i.e. the
whole proving is publicly executed and verified on the ledger by strictly follow-
ing the rules provided in a smart contract. The key point is that the owner is
not required to be online to provide a challenge for the verification by the cryp-
tographic primitive. Whenever data must be stored, data is first encrypted (as
other solutions) and represented as a matrix of which data chunks for each row
is considered as a secret polynomial to be used in the Kate et al. [15] polyno-
mial commitment scheme, i.e. the polynomial is homomorphically evaluated on
a publicly random secret value, with the related result published as the commit-
ment of the secret polynomial. All the commitments from the rows3 are posted
on the Avail’s DA ledger and, if verified, are effectively published.

To prove availability, a smart contract managing the agreement’s rewards
can be programmed to require a proof over a challenge computed by the cur-
rent (hash of the) status of the ledger which is (perhaps optimistically) assumed
to be unpredictable. Each storer computes the DA proof, composed of the se-
cret polynomial’s evaluation on the provided challenge, and the KZG’s proof,
to allow handlers to verify proofs and correctly execute the smart contract’s
rewarding mechanism. By cleverly shaping the representation matrix, the pro-
tocol allows selective proving, e.g. different files are committed into different
polynomials because of their placement in the matrix representation, thus per-
mitting the verification of specific data by requiring the (proved) evaluation of
selected polynomials. Such a property enables selective verification that reduces
the bandwidth demanded to the network and an increased scalability.

Another technical advantage of using a publicly verifiable scheme, such as
KZG, is the possibility to create light clients, i.e. handlers in our model that
preserve a partial status of the underlying ledger. Each light client can store for
a limited time a bounded amount of partial DA proofs. All clients are intercon-
nected into a peer-to-peer network that acts as a local-cache of the current DA
network. Any of their proofs can be publicly verified, which guarantees that the
light clients are not maliciously faking the DA proofs.

The light client’s network would offload additional workload from the net-
work allowing any party willing to check the availability of some data to query
the local-cache instead. Having lower latency allows a quicker access to the avail-
ability proofs and allows a (possible) quicker access to the data/proof.

The natural problems arising are all about correctly handling cache-lifetime,
e.g. the availability proofs provided by the cache might be different from the real
availability which might have consequences, especially if the ledger’s handlers

3 The white-paper [5] specifies the usage of an erasure code to extend either the
matrix columns or the computed commitments. The paper does not provide a precise
formulation thus we limit our description.



SoK: Modelling Data Storage and Availability 13

decide to provide a DA proof that will survive in the peer-to-peer cache while
effectively making the data unavailable.

Avail considers tokenomics for their entities, where requesting to storage is
paid by the owner and the DA proofs are used to finalize the payments via a
smart contract, where forcing the availability proofs to be stored on the ledger
provides accountability. At the same time, honest validators (handlers) are re-
warded by the ledger’s block-generation fees plus additional estimated expenses
to run smart contracts. Notable, only the light clients are not paid for their effort
to lowers the systems’ demands however, such a rewarding mechanism might be
hard to provide by the very nature of the peer-to-peer network and an unintu-
itive challenge to solve: it is unclear how to provably count the access to valid
cached proofs.

We classify Avail’s DA layer solution as a decentralized handler with de-
centralized storage that provides timed DA proofs verified by the network (via
smart-contracts) of the whole or partial data (DA.1, DA.2, DA.3). The effective
storage is distributed and allows concrete threshold reconstruction mechanism
using erasure codes (DA.4). The cached-proofs, stored by the light-clients peer-to-
peer network, provide redundancy of the main ledger, systematically offloading
efforts on it, which can be better spent into the ledger maintenance (DA.5). As
in other solutions, the owner fully controls the access on data.

Celestia. Celestia [9] is a development framework for decentralized application
of which data storage and availability layer is based on Al-Bassam [7] and Al-
Bassam et al. [8] works. Similarly to other solutions, the DA layer is an indepen-
dent blockchain with a self-sustaining tokenomics that rewards honest behaviour
of the network and storage nodes. Even if the DA guarantees are hash-based,
the underlying proving methodology considers a two-dimensional matrix where
the data is expanded into a Reed-Solomon Encoded Merkle Tree, i.e. the data is
first extended via a Reed-Solomon code and later a Merkle-tree root is evaluated
for each column and row for later combining all these values into a single root
value. The matrix structure, together with the increased number of Merkle-roots
considered, enables the verification of only selected columns/rows and, similarly
to Avail, lets light clients reduce the distribution’s costs of the DA proofs from
the main network.

From the white-paper underlying the protocol [7, 8], we classify Celestia’s DA
layer solution as a decentralized handler and storage that guarantees DA verifica-
tion of the whole or partial data (DA.1, DA.3). The storage is distributed and the
protocol is designed to use erasure codes techniques (DA.4). This way, Celestia
obtains the decentralization of the DA proving costs among nodes (DA.5).

4 Discussion and Future Directions

All known solutions introduce some tweaks to better fit the application they are
designed for. We report in Table 1 the classification of such solutions into our
model and the properties highlighted in Section 2. Our model does lead to
a systematic classification highlighting differences between these solutions, e.g.:



14 Brunetta–Sala

Table 1. Summary for the examples of Section 3, according to our model (Section 2).
The symbol ✓ indicates presence/compliance, ∼ if optionally implementable, ✗ lack of
feature, ? if unknown from the literature, and a dash “–” if not relevant. We denote
the owner with O, the handler with H, the storer with S and the retriever with R.

O
w

n
er

H
an

d
le

r
S
to

re
r

R
et

ri
ev

er
F
u
ll

O
C

on
tr

ol
C

on
fi
d
en

ti
al

it
y

D
es

ig
n
at

ed
R

P
ro

x
y

re
-e

n
cr

y
p
ti
on

S
C

en
tr

al
iz

ed
S

D
is

tr
ib

u
te

d
S

D
ec

en
tr

al
iz

ed
D
A

P
ro

v
in

g
H

C
en

tr
al

iz
ed

H
D

is
tr

ib
u
te

d

H
D

ec
en

tr
al

iz
ed

C
on

tr
ac

tu
al

M
ar

ke
t

R
ed

u
n
d
an

t
N

et
w

or
k

D
A
.1

D
A
.2

D
A
.3

D
A
.4

D
A
.5

A
u
to

m
at

ic
D
A

S
m

ar
t

C
on

tr
ac

t
D
A

C
ry

p
to

gr
ap

h
y

Protocol Roles Access Storage Handling Data Availability

Autonomous O O O O ✓ – – – ✓ – – ✗ ✓ – – ✗ ✗ – – – – – – – –
Self-Handled
(single storer)

O O S O ✓ – – – ✓ – – ∼ ✓ – – ✓ ✗ ∼ ∼ ∼ – – – – As O desire

Self-Handled
(multi storer)

O O S O ✓ – – – – ✓ – ∼ ✓ – – ✓ ✗ ∼ ∼ ∼ – – – – As O desire

Cloud Storage
(typical)

O H H R ∼ ✗ ✓ ✗ – ✓ – ✗ ✓ ✓4 – ✓ ✓ – – – ✓ ✓ – – –

Storj O H S R ✓ ✓ ✓ ∼ – – ✓ ✓ ✓ ? – ✓ ✓ ✓ ✗ ✗ ✓ ✓ ∼ ✓ Hash-based PoS

FileCoin O H S R ✓ ✓ ✓ ∼ – – ✓ ✓ – – ✓ ✓ ✓ ✓ ✓ ✓ – – ∼ ∼ PoS and SNARK

Avail O H S R ✓ ✓ ✓ ∼ – – ✓ ✓ – – ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ KZG

Arweave O H S R ✓ ✓ ✓ ∼ – – ✓ ✓ – – ✓ ? ✓ ✓ ✓ ✓ ✓ ✓ ✓ ? Hash SPoA, VDF

Sia O H S R ✓ ✓ ✓ ∼ – – ✓ ✓ – – ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓ Hash-based PoS

Celestia [7, 8] O H S R ✓ ✓ ✓ ∼ – – ✓ ✓ – – ✓ ? ✓ ✓ ✓ ? ✓ ✓ ? ?5 Merkle Matrix

◦ Differently from other protocols, Storj seems to prefer a (software) centralized
solution. One of their future goal is to provide a (software) decentralized
solution to align with similar different solutions.

◦ Differently from Avail and Storj, FileCoin does not develop specific redun-
dancy/threshold mechanism to protect against the loss of data shares (be-
cause this should be handled by the underlying IPFS layer).

◦ FileCoin is designed for direct coordination between O’s storage demand and
store nodes, while Storj and Avail focusses more on an offer-framework where
the deals are agreed upon a market which is available on the public ledger.

◦ Avail is the only protocol to define a peer-to-peer network composed of light
clients that crate an effective cache of the DA layer. This idea provides clear
intra-network optimizations that improve with the increase of the peers net-
work. However, the white-paper [5] does not offer enough details to under-

4 Cloud storage providers might distribute their workload or provide multiple access
point for the storage service. We identify both as possible without separating the
table’s entry.

5 From the research articles, it is not specified if the DA verification can be sponta-
neously requested by the network, if the proofs can effectively be prepared before
hand and/or if the layer provides smart contracts to create a contract.



SoK: Modelling Data Storage and Availability 15

stand the limitations, how natural cache-memory problems are solved and
which security assumptions are proved.6

4.1 Further Comments

While investigating the literature, we noted that no PoS/DA solution (with de-
tailed technical white-paper) is designed around the idea of utilizing the peri-
odical DA proofs as a possible mechanism to facilitate a possible data-recovery
procedure. For specific scenarios where the data is not too big, imagine the han-
dler verifies and stores t DA proofs on the ledger which are exactly the amount
of proof requested by a contractual agreement. The consecutive protocol’s exe-
cution would suggest that the storage node provides to the retriever the data.
However, a malicious retriever might act as the data is corrupted thus forcing a
rewarding resolution based on the smart contract’s code.

Following our previous discussion, what we suggest is to have a reconstruction
algorithm that takes the verified DA proofs and outputs the data. For example,
Avail uses KZG polynomial evaluations as proofs which, by algebraic properties,
would allow the reconstruction of the whole polynomial if the correct amount of
evaluations is known, i.e. one more than the degree of the polynomial. Therefore,
a timed mechanism that publicly releases proofs and, after a pre-defined number
of periods, automatically permits recovery of committed data.

4.2 Conclusions

The domain of data storage and availability is a rapidly evolving environment
where new ideas and techniques often mixes with specialized features oriented
to real-world applications. Our model leads to a precise classification of these
solutions (and more traditional ones), providing both help for comparing storage
systems and a guideline for developers searching the best-fitting framework (that
achieves their requirement without introducing additional complexity).

Acknowledgments. The authors would like to thank Ripple’s University Block-
chain Research Initiative, Amit Chaudhary and the MindCrypt team.

References

1. 0G Labs, 0G: Towards Data Availability 2.0, (2024). https://0g.ai

6 If both the DA proving periodicity and the cache have a lifetime of ∆, then a handler
H may give partial proofs of some data m to the light client’s network exactly at the
same time as the last DA proof is published. If H is malicious, it might delete m, sell
its space for a timespan <∆, which would let H query from the cache-network the
partial proofs and reconstruct m thus fraudulently fulfilling its DA obligations. H
would gain almost twice the reward at the cost of the light client’s network, which
are not rewarded.

https://0g.ai


16 Brunetta–Sala

2. Ateniese, G., Burns, R.C., Curtmola, R., Herring, J., Kissner, L., Peterson, Z.N.J.,
Song, D.: Provable data possession at untrusted stores. In: Ning, P., De Capitani
di Vimercati, S., Syverson, P.F. (eds.) ACM CCS 2007, pp. 598–609. ACM Press
(2007). https://doi.org/10.1145/1315245.1315318

3. Ateniese, G., Chen, L., Etemad, M., Tang, Q.: Proof of Storage-Time: Efficiently
Checking Continuous Data Availability. In: NDSS 2022. The Internet Society (2020).
https://doi.org/10.14722/ndss.2020.24427

4. Ateniese, G., Kamara, S., Katz, J.: Proofs of Storage from Homomorphic Identi-
fication Protocols. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, pp. 319–333.
Springer, Berlin, Heidelberg (2009). https://doi.org/10.1007/978- 3- 642-
10366-7_19

5. Avail Team, Avail: A Unifying Blockchain Network, version 2.1. (2024). https:
//www.availproject.org

6. Balaji, S., Krishnan, M.N., Vajha, M., Ramkumar, V., Sasidharan, B., Kumar,
P.V.: Erasure coding for distributed storage: An overview. Science China Informa-
tion Sciences 61, 1–45 (2018)

7. Al-Bassam, M.: LazyLedger: A Distributed Data Availability Ledger With Client-
Side Smart Contracts, (2019). arXiv: 1905.09274 [cs.CR]. https://arxiv.org/
abs/1905.09274.

8. Al-Bassam, M., Sonnino, A., Buterin, V.: Fraud and Data Availability Proofs: Max-
imising Light Client Security and Scaling Blockchains with Dishonest Majorities,
(2019). arXiv: 1809.09044 [cs.CR]. https://arxiv.org/abs/1809.09044.

9. Celestia Labs, Celestia, (2025). https://celestia.org
10. Cimatti, A., Sclavis, F.D., Galano, G., Giammusso, S., Iezzi, M., Muci, A., Nardelli,

M., Pedicini, M. Journal of Mathematical Cryptology 19(1), 20240045 (2025).
https://doi.org/doi:10.1515/jmc-2024-0045

11. Ernstberger, J., Lauinger, J., Elsheimy, F., Zhou, L., Steinhorst, S., Canetti, R.,
Miller, A., Gervais, A., Song, D.: SoK: Data Sovereignty. In: 2023 IEEE European
Symposium on Security and Privacy, pp. 122–143. IEEE Computer Society Press
(2023). https://doi.org/10.1109/EuroSP57164.2023.00017

12. Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P., Gervais, A.: SoK: Layer-
Two Blockchain Protocols. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS,
pp. 201–226. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
51280-4_12

13. Halevi, S., Harnik, D., Pinkas, B., Shulman-Peleg, A.: Proofs of ownership in remote
storage systems. In: Chen, Y., Danezis, G., Shmatikov, V. (eds.) ACM CCS 2011,
pp. 491–500. ACM Press (2011). https://doi.org/10.1145/2046707.2046765

14. Huang, C., Song, R., Gao, S., Guo, Y., Xiao, B.: Data Availability and Decentral-
ization: New Techniques for zk-Rollups in Layer 2 Blockchain Networks, (2024).
arXiv: 2403.10828 [cs.CR]. https://arxiv.org/abs/2403.10828.

15. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-Size Commitments to Polynomi-
als and Their Applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, pp. 177–
194. Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
17373-8_11

16. Li, C., Xu, M., Zhang, J., Guo, H., Cheng, X.: SoK: Decentralized storage network.
High-Confidence Computing 4(3), 100239 (2024). https://doi.org/10.1016/j.
hcc.2024.100239

17. Liang, J., Hu, D., Wu, P., Yang, Y., Shen, Q., Wu, Z.: SoK: Understanding zk-
SNARKs: The Gap Between Research and Practice, Cryptology ePrint Archive,
Paper 2025/172 (2025). https://eprint.iacr.org/2025/172.

https://doi.org/10.1145/1315245.1315318
https://doi.org/10.14722/ndss.2020.24427
https://doi.org/10.1007/978-3-642-10366-7_19
https://doi.org/10.1007/978-3-642-10366-7_19
https://www.availproject.org
https://www.availproject.org
https://arxiv.org/abs/1905.09274
https://arxiv.org/abs/1905.09274
https://arxiv.org/abs/1905.09274
https://arxiv.org/abs/1809.09044
https://arxiv.org/abs/1809.09044
https://celestia.org
https://doi.org/doi:10.1515/jmc-2024-0045
https://doi.org/10.1109/EuroSP57164.2023.00017
https://doi.org/10.1007/978-3-030-51280-4_12
https://doi.org/10.1007/978-3-030-51280-4_12
https://doi.org/10.1145/2046707.2046765
https://arxiv.org/abs/2403.10828
https://arxiv.org/abs/2403.10828
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1016/j.hcc.2024.100239
https://doi.org/10.1016/j.hcc.2024.100239
https://eprint.iacr.org/2025/172


SoK: Modelling Data Storage and Availability 17

18. Maymounkov, P., Mazières, D.: Kademlia: A Peer-to-Peer Information System
Based on the XOR Metric. In: Revised Papers from the First International Work-
shop on Peer-to-Peer Systems. IPTPS ’01. Springer-Verlag, Berlin, Heidelberg
(2002)

19. Moran, T., Orlov, I.: Proofs of Space-Time and Rational Proofs of Storage, Cryp-
tology ePrint Archive, Report 2016/035 (2016). https://eprint.iacr.org/2016/
035.

20. Movement Labs, Movement Network: High-Throughput Fast Finality Move-based
Chains Secured by Ethereum, version 0.2.7. (2025). https://www.movementnetwork.
xyz/whitepaper/movement-whitepaper_en.pdf

21. Protocol Labs, Filecoin: A Decentralized Storage Network, (2017). https : / /
filecoin.io/filecoin.pdf

22. Raikwar, M., Gligoroski, D., Kralevska, K.: SoK of Used Cryptography in Block-
chain. IEEE Access 7, 148550–148575 (2019). https://doi.org/10.1109/ACCESS.
2019.2946983

23. Saif, M.B., Migliorini, S., Spoto, F.: A Survey on Data Availability in Layer 2
Blockchain Rollups: Open Challenges and Future Improvements. Future Internet
16(9) (2024). https://doi.org/10.3390/fi16090315. https://www.mdpi.com/
1999-5903/16/9/315

24. Scafuro, A.: Blockchains and Cryptography. In: Advanced Cryptographic Proto-
cols, pp. 100–130. De Cifris Press (2024). https://doi.org/10.69091/koine/vol-
4-P05

25. Sengupta, B., Bag, S., Ruj, S., Sakurai, K.: Retricoin: Bitcoin based on compact
proofs of retrievability. In: Proceedings of the 17th International Conference on
Distributed Computing and Networking. Association for Computing Machinery,
New York, NY, USA (2016). https://doi.org/10.1145/2833312.2833317

26. Skidanov, A., Polosukhin, I., Wang, B.: Nightshade: Near Protocol Sharding Design
2.0, (2024). https://near.org/papers/nightshade

27. Trautwein, D., Raman, A., Tyson, G., Castro, I., Scott, W., Schubotz, M., Gipp,
B., Psaras, Y.: Design and evaluation of IPFS: a storage layer for the decentralized
web. In: Proceedings of the ACM SIGCOMM 2022 Conference. Association for
Computing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/
3544216.3544232

28. Vorick, D., Champine, L.: Sia: Simple Decentralized Storage, (2014). https://
sia.tech/sia.pdf

29. Wilkinson, S., Boshevski, T., Brandoff, J., Prestwich, J., Hall, G., Gerbes, P.,
Hutchins, P., Pollard, C., Buterin, V.: Storj: A Peer-to-Peer Cloud Storage Net-
work, (2016). https://storj.io/storjv2.pdf

30. Williams, S., Kedia, A., Berman, L., Campos-Groth, S.: Arweave: The Permanent
Information Storage Protocol, (2023). https://arweave.org

31. Xu, J., Yang, A., Zhou, J., Wong, D.S.: Lightweight and Privacy-Preserving Del-
egatable Proofs of Storage, Cryptology ePrint Archive, Report 2014/395 (2014).
https://eprint.iacr.org/2014/395.

32. Zahed Benisi, N., Aminian, M., Javadi, B.: Blockchain-based decentralized storage
networks: A survey. Journal of Network and Computer Applications 162, 102656
(2020). https://doi.org/10.1016/j.jnca.2020.102656

33. Zhang, C., Li, X., Au, M.H.: ePoSt: Practical and Client-Friendly Proof of Storage-
Time. IEEE Transactions on Information Forensics and Security 18, 1052–1063
(2023). https://doi.org/10.1109/TIFS.2022.3233780

https://eprint.iacr.org/2016/035
https://eprint.iacr.org/2016/035
https://www.movementnetwork.xyz/whitepaper/movement-whitepaper_en.pdf
https://www.movementnetwork.xyz/whitepaper/movement-whitepaper_en.pdf
https://filecoin.io/filecoin.pdf
https://filecoin.io/filecoin.pdf
https://doi.org/10.1109/ACCESS.2019.2946983
https://doi.org/10.1109/ACCESS.2019.2946983
https://doi.org/10.3390/fi16090315
https://www.mdpi.com/1999-5903/16/9/315
https://www.mdpi.com/1999-5903/16/9/315
https://doi.org/10.69091/koine/vol-4-P05
https://doi.org/10.69091/koine/vol-4-P05
https://doi.org/10.1145/2833312.2833317
https://near.org/papers/nightshade
https://doi.org/10.1145/3544216.3544232
https://doi.org/10.1145/3544216.3544232
https://sia.tech/sia.pdf
https://sia.tech/sia.pdf
https://storj.io/storjv2.pdf
https://arweave.org
https://eprint.iacr.org/2014/395
https://doi.org/10.1016/j.jnca.2020.102656
https://doi.org/10.1109/TIFS.2022.3233780

	SoK: Modelling Data Storage and Availability

